Point Cloud Library (PCL)  1.14.1-dev
ia_fpcs.hpp
1 /*
2  * Software License Agreement (BSD License)
3  *
4  * Point Cloud Library (PCL) - www.pointclouds.org
5  * Copyright (c) 2014-, Open Perception, Inc.
6  * Copyright (C) 2008 Ben Gurion University of the Negev, Beer Sheva, Israel.
7  *
8  * All rights reserved
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions are met
12  *
13  * * Redistributions of source code must retain the above copyright
14  * notice, this list of conditions and the following disclaimer.
15  * * Redistributions in binary form must reproduce the above
16  * copyright notice, this list of conditions and the following
17  * disclaimer in the documentation and/or other materials provided
18  * with the distribution.
19  * * Neither the name of the copyright holder(s) nor the names of its
20  * contributors may be used to endorse or promote products derived
21  * from this software without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
24  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
25  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
26  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
27  * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
28  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
29  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
30  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
31  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
33  * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
34  * POSSIBILITY OF SUCH DAMAGE.
35  *
36  */
37 
38 #ifndef PCL_REGISTRATION_IMPL_IA_FPCS_H_
39 #define PCL_REGISTRATION_IMPL_IA_FPCS_H_
40 
41 #include <pcl/common/distances.h>
42 #include <pcl/common/time.h>
43 #include <pcl/common/utils.h>
44 #include <pcl/filters/random_sample.h>
45 #include <pcl/registration/ia_fpcs.h>
46 #include <pcl/registration/transformation_estimation_3point.h>
47 #include <pcl/sample_consensus/sac_model_plane.h>
48 
49 #include <limits>
50 
51 ///////////////////////////////////////////////////////////////////////////////////////////
52 template <typename PointT>
53 inline float
55  float max_dist,
56  int nr_threads)
57 {
58  const float max_dist_sqr = max_dist * max_dist;
59  const std::size_t s = cloud->size();
60 
62  tree.setInputCloud(cloud);
63 
64  float mean_dist = 0.f;
65  int num = 0;
66  pcl::Indices ids(2);
67  std::vector<float> dists_sqr(2);
68 
69  pcl::utils::ignore(nr_threads);
70 #pragma omp parallel for default(none) shared(tree, cloud) \
71  firstprivate(ids, dists_sqr) reduction(+ : mean_dist, num) \
72  firstprivate(s, max_dist_sqr) num_threads(nr_threads)
73  for (int i = 0; i < 1000; i++) {
74  tree.nearestKSearch((*cloud)[rand() % s], 2, ids, dists_sqr);
75  if (dists_sqr[1] < max_dist_sqr) {
76  mean_dist += std::sqrt(dists_sqr[1]);
77  num++;
78  }
79  }
80 
81  return (mean_dist / num);
82 };
83 
84 ///////////////////////////////////////////////////////////////////////////////////////////
85 template <typename PointT>
86 inline float
88  const pcl::Indices& indices,
89  float max_dist,
90  int nr_threads)
91 {
92  const float max_dist_sqr = max_dist * max_dist;
93  const std::size_t s = indices.size();
94 
96  tree.setInputCloud(cloud);
97 
98  float mean_dist = 0.f;
99  int num = 0;
100  pcl::Indices ids(2);
101  std::vector<float> dists_sqr(2);
102 
103  pcl::utils::ignore(nr_threads);
104 #if OPENMP_LEGACY_CONST_DATA_SHARING_RULE
105 #pragma omp parallel for default(none) shared(tree, cloud, indices) \
106  firstprivate(ids, dists_sqr) reduction(+ : mean_dist, num) num_threads(nr_threads)
107 #else
108 #pragma omp parallel for default(none) shared(tree, cloud, indices, s, max_dist_sqr) \
109  firstprivate(ids, dists_sqr) reduction(+ : mean_dist, num) num_threads(nr_threads)
110 #endif
111  for (int i = 0; i < 1000; i++) {
112  tree.nearestKSearch((*cloud)[indices[rand() % s]], 2, ids, dists_sqr);
113  if (dists_sqr[1] < max_dist_sqr) {
114  mean_dist += std::sqrt(dists_sqr[1]);
115  num++;
116  }
117  }
118 
119  return (mean_dist / num);
120 };
121 
122 ///////////////////////////////////////////////////////////////////////////////////////////
123 template <typename PointSource, typename PointTarget, typename NormalT, typename Scalar>
126 : source_normals_()
127 , target_normals_()
128 , score_threshold_(std::numeric_limits<float>::max())
129 , fitness_score_(std::numeric_limits<float>::max())
130 {
131  reg_name_ = "pcl::registration::FPCSInitialAlignment";
132  max_iterations_ = 0;
133  ransac_iterations_ = 1000;
136 }
137 
138 ///////////////////////////////////////////////////////////////////////////////////////////
139 template <typename PointSource, typename PointTarget, typename NormalT, typename Scalar>
140 void
142  computeTransformation(PointCloudSource& output, const Eigen::Matrix4f& guess)
143 {
144  if (!initCompute())
145  return;
146 
147  final_transformation_ = guess;
148  bool abort = false;
149  std::vector<MatchingCandidates> all_candidates(max_iterations_);
150  pcl::StopWatch timer;
151 
152 #pragma omp parallel default(none) shared(abort, all_candidates, timer) \
153  num_threads(nr_threads_)
154  {
155 #ifdef _OPENMP
156  const unsigned int seed =
157  static_cast<unsigned int>(std::time(nullptr)) ^ omp_get_thread_num();
158  std::srand(seed);
159  PCL_DEBUG("[%s::computeTransformation] Using seed=%u\n", reg_name_.c_str(), seed);
160 #pragma omp for schedule(dynamic)
161 #endif
162  for (int i = 0; i < max_iterations_; i++) {
163 #pragma omp flush(abort)
164 
165  MatchingCandidates candidates(1);
166  pcl::Indices base_indices(4);
167  all_candidates[i] = candidates;
168 
169  if (!abort) {
170  float ratio[2];
171  // select four coplanar point base
172  if (selectBase(base_indices, ratio) == 0) {
173  // calculate candidate pair correspondences using diagonal lengths of base
174  pcl::Correspondences pairs_a, pairs_b;
175  if (bruteForceCorrespondences(base_indices[0], base_indices[1], pairs_a) ==
176  0 &&
177  bruteForceCorrespondences(base_indices[2], base_indices[3], pairs_b) ==
178  0) {
179  // determine candidate matches by combining pair correspondences based on
180  // segment distances
181  std::vector<pcl::Indices> matches;
182  if (determineBaseMatches(base_indices, matches, pairs_a, pairs_b, ratio) ==
183  0) {
184  // check and evaluate candidate matches and store them
185  handleMatches(base_indices, matches, candidates);
186  if (!candidates.empty())
187  all_candidates[i] = candidates;
188  }
189  }
190  }
191 
192  // check terminate early (time or fitness_score threshold reached)
193  if (!candidates.empty() && candidates[0].fitness_score < score_threshold_) {
194  PCL_DEBUG("[%s::computeTransformation] Terminating because fitness score "
195  "(%g) is below threshold (%g).\n",
196  reg_name_.c_str(),
197  candidates[0].fitness_score,
198  score_threshold_);
199  abort = true;
200  }
201  else if (timer.getTimeSeconds() > max_runtime_) {
202  PCL_DEBUG("[%s::computeTransformation] Terminating because time exceeded.\n",
203  reg_name_.c_str());
204  abort = true;
205  }
206 
207 #pragma omp flush(abort)
208  }
209  }
210  }
211 
212  // determine best match over all tries
213  finalCompute(all_candidates);
214 
215  // apply the final transformation
216  pcl::transformPointCloud(*input_, output, final_transformation_);
217 
218  deinitCompute();
219 }
220 
221 ///////////////////////////////////////////////////////////////////////////////////////////
222 template <typename PointSource, typename PointTarget, typename NormalT, typename Scalar>
223 bool
225  initCompute()
226 {
227  const unsigned int seed = std::time(nullptr);
228  std::srand(seed);
229  PCL_DEBUG("[%s::initCompute] Using seed=%u\n", reg_name_.c_str(), seed);
230 
231  // basic pcl initialization
233  return (false);
234 
235  // check if source and target are given
236  if (!input_ || !target_) {
237  PCL_ERROR("[%s::initCompute] Source or target dataset not given!\n",
238  reg_name_.c_str());
239  return (false);
240  }
241 
242  if (!target_indices_ || target_indices_->empty()) {
243  target_indices_.reset(new pcl::Indices(target_->size()));
244  int index = 0;
245  for (auto& target_index : *target_indices_)
246  target_index = index++;
247  target_cloud_updated_ = true;
248  }
249 
250  // if a sample size for the point clouds is given; preferably no sampling of target
251  // cloud
252  if (nr_samples_ > 0 && static_cast<std::size_t>(nr_samples_) < indices_->size()) {
253  source_indices_ = pcl::IndicesPtr(new pcl::Indices);
254  pcl::RandomSample<PointSource> random_sampling;
255  random_sampling.setInputCloud(input_);
256  random_sampling.setIndices(indices_);
257  random_sampling.setSample(nr_samples_);
258  random_sampling.setSeed(seed);
259  random_sampling.filter(*source_indices_);
260  }
261  else
262  source_indices_ = indices_;
263 
264  // check usage of normals
265  if (source_normals_ && target_normals_ && source_normals_->size() == input_->size() &&
266  target_normals_->size() == target_->size())
267  use_normals_ = true;
268 
269  // set up tree structures
270  if (target_cloud_updated_) {
271  tree_->setInputCloud(target_, target_indices_);
272  target_cloud_updated_ = false;
273  }
274 
275  // set predefined variables
276  constexpr int min_iterations = 4;
277  constexpr float diameter_fraction = 0.3f;
278 
279  // get diameter of input cloud (distance between farthest points)
280  Eigen::Vector4f pt_min, pt_max;
281  pcl::getMinMax3D(*target_, *target_indices_, pt_min, pt_max);
282  diameter_ = (pt_max - pt_min).norm();
283 
284  // derive the limits for the random base selection
285  float max_base_diameter = diameter_ * approx_overlap_ * 2.f;
286  max_base_diameter_sqr_ = max_base_diameter * max_base_diameter;
287 
288 #ifdef _OPENMP
289  if (nr_threads_ < 1) {
290  nr_threads_ = omp_get_num_procs();
291  PCL_DEBUG("[%s::initCompute] Setting number of threads to %i.\n",
292  reg_name_.c_str(),
293  nr_threads_);
294  }
295 #endif // _OPENMP
296 
297  // normalize the delta
298  if (normalize_delta_) {
299  float mean_dist = getMeanPointDensity<PointTarget>(
300  target_, *target_indices_, 0.05f * diameter_, nr_threads_);
301  delta_ *= mean_dist;
302  }
303 
304  // heuristic determination of number of trials to have high probability of finding a
305  // good solution
306  if (max_iterations_ == 0) {
307  float first_est = std::log(small_error_) /
308  std::log(1.0 - std::pow(static_cast<double>(approx_overlap_),
309  static_cast<double>(min_iterations)));
310  max_iterations_ =
311  static_cast<int>(first_est / (diameter_fraction * approx_overlap_ * 2.f));
312  PCL_DEBUG("[%s::initCompute] Estimated max iterations as %i\n",
313  reg_name_.c_str(),
314  max_iterations_);
315  }
316 
317  // set further parameter
318  if (score_threshold_ == std::numeric_limits<float>::max())
319  score_threshold_ = 1.f - approx_overlap_;
320 
321  if (max_iterations_ < 4)
322  max_iterations_ = 4;
323 
324  if (max_runtime_ < 1)
325  max_runtime_ = std::numeric_limits<int>::max();
326 
327  // calculate internal parameters based on the the estimated point density
328  max_pair_diff_ = delta_ * 2.f;
329  max_edge_diff_ = delta_ * 4.f;
330  coincidation_limit_ = delta_ * 2.f; // EDITED: originally std::sqrt (delta_ * 2.f)
331  max_mse_ = powf(delta_ * 2.f, 2.f);
332  max_inlier_dist_sqr_ = powf(delta_ * 2.f, 2.f);
333  PCL_DEBUG("[%s::initCompute] delta_=%g, max_inlier_dist_sqr_=%g, "
334  "coincidation_limit_=%g, max_edge_diff_=%g, max_pair_diff_=%g\n",
335  reg_name_.c_str(),
336  delta_,
337  max_inlier_dist_sqr_,
338  coincidation_limit_,
339  max_edge_diff_,
340  max_pair_diff_);
341 
342  // reset fitness_score
343  fitness_score_ = std::numeric_limits<float>::max();
344 
345  return (true);
346 }
347 
348 ///////////////////////////////////////////////////////////////////////////////////////////
349 template <typename PointSource, typename PointTarget, typename NormalT, typename Scalar>
350 int
352  selectBase(pcl::Indices& base_indices, float (&ratio)[2])
353 {
354  const float too_close_sqr = max_base_diameter_sqr_ * 0.01;
355 
356  Eigen::VectorXf coefficients(4);
358  plane.setIndices(target_indices_);
359  Eigen::Vector4f centre_pt;
360  float nearest_to_plane = std::numeric_limits<float>::max();
361 
362  // repeat base search until valid quadruple was found or ransac_iterations_ number of
363  // tries were unsuccessful
364  for (int i = 0; i < ransac_iterations_; i++) {
365  // random select an appropriate point triple
366  if (selectBaseTriangle(base_indices) < 0)
367  continue;
368 
369  pcl::Indices base_triple(base_indices.begin(), base_indices.end() - 1);
370  plane.computeModelCoefficients(base_triple, coefficients);
371  pcl::compute3DCentroid(*target_, base_triple, centre_pt);
372 
373  // loop over all points in source cloud to find most suitable fourth point
374  const PointTarget* pt1 = &((*target_)[base_indices[0]]);
375  const PointTarget* pt2 = &((*target_)[base_indices[1]]);
376  const PointTarget* pt3 = &((*target_)[base_indices[2]]);
377 
378  for (const auto& target_index : *target_indices_) {
379  const PointTarget* pt4 = &((*target_)[target_index]);
380 
381  float d1 = pcl::squaredEuclideanDistance(*pt4, *pt1);
382  float d2 = pcl::squaredEuclideanDistance(*pt4, *pt2);
383  float d3 = pcl::squaredEuclideanDistance(*pt4, *pt3);
384  float d4 = (pt4->getVector3fMap() - centre_pt.head<3>()).squaredNorm();
385 
386  // check distance between points w.r.t minimum sampling distance; EDITED -> 4th
387  // point now also limited by max base line
388  if (d1 < too_close_sqr || d2 < too_close_sqr || d3 < too_close_sqr ||
389  d4 < too_close_sqr || d1 > max_base_diameter_sqr_ ||
390  d2 > max_base_diameter_sqr_ || d3 > max_base_diameter_sqr_)
391  continue;
392 
393  // check distance to plane to get point closest to plane
394  float dist_to_plane = pcl::pointToPlaneDistance(*pt4, coefficients);
395  if (dist_to_plane < nearest_to_plane) {
396  base_indices[3] = target_index;
397  nearest_to_plane = dist_to_plane;
398  }
399  }
400 
401  // check if at least one point fulfilled the conditions
402  if (nearest_to_plane != std::numeric_limits<float>::max()) {
403  // order points to build largest quadrangle and calculate intersection ratios of
404  // diagonals
405  setupBase(base_indices, ratio);
406  return (0);
407  }
408  }
409 
410  // return unsuccessful if no quadruple was selected
411  return (-1);
412 }
413 
414 ///////////////////////////////////////////////////////////////////////////////////////////
415 template <typename PointSource, typename PointTarget, typename NormalT, typename Scalar>
416 int
418  selectBaseTriangle(pcl::Indices& base_indices)
419 {
420  const auto nr_points = target_indices_->size();
421  float best_t = 0.f;
422 
423  // choose random first point
424  base_indices[0] = (*target_indices_)[rand() % nr_points];
425  auto* index1 = base_indices.data();
426 
427  // random search for 2 other points (as far away as overlap allows)
428  for (int i = 0; i < ransac_iterations_; i++) {
429  auto* index2 = &(*target_indices_)[rand() % nr_points];
430  auto* index3 = &(*target_indices_)[rand() % nr_points];
431 
432  Eigen::Vector3f u =
433  (*target_)[*index2].getVector3fMap() - (*target_)[*index1].getVector3fMap();
434  Eigen::Vector3f v =
435  (*target_)[*index3].getVector3fMap() - (*target_)[*index1].getVector3fMap();
436  float t =
437  u.cross(v).squaredNorm(); // triangle area (0.5 * sqrt(t)) should be maximal
438 
439  // check for most suitable point triple
440  if (t > best_t && u.squaredNorm() < max_base_diameter_sqr_ &&
441  v.squaredNorm() < max_base_diameter_sqr_) {
442  best_t = t;
443  base_indices[1] = *index2;
444  base_indices[2] = *index3;
445  }
446  }
447 
448  // return if a triplet could be selected
449  return (best_t == 0.f ? -1 : 0);
450 }
451 
452 ///////////////////////////////////////////////////////////////////////////////////////////
453 template <typename PointSource, typename PointTarget, typename NormalT, typename Scalar>
454 void
456  setupBase(pcl::Indices& base_indices, float (&ratio)[2])
457 {
458  float best_t = std::numeric_limits<float>::max();
459  const pcl::Indices copy(base_indices.begin(), base_indices.end());
460  pcl::Indices temp(base_indices.begin(), base_indices.end());
461 
462  // loop over all combinations of base points
463  for (auto i = copy.begin(), i_e = copy.end(); i != i_e; ++i)
464  for (auto j = copy.begin(), j_e = copy.end(); j != j_e; ++j) {
465  if (i == j)
466  continue;
467 
468  for (auto k = copy.begin(), k_e = copy.end(); k != k_e; ++k) {
469  if (k == j || k == i)
470  continue;
471 
472  auto l = copy.begin();
473  while (l == i || l == j || l == k)
474  ++l;
475 
476  temp[0] = *i;
477  temp[1] = *j;
478  temp[2] = *k;
479  temp[3] = *l;
480 
481  // calculate diagonal intersection ratios and check for suitable segment to
482  // segment distances
483  float ratio_temp[2];
484  float t = segmentToSegmentDist(temp, ratio_temp);
485  if (t < best_t) {
486  best_t = t;
487  ratio[0] = ratio_temp[0];
488  ratio[1] = ratio_temp[1];
489  base_indices = temp;
490  }
491  }
492  }
493 }
494 
495 ///////////////////////////////////////////////////////////////////////////////////////////
496 template <typename PointSource, typename PointTarget, typename NormalT, typename Scalar>
497 float
499  segmentToSegmentDist(const pcl::Indices& base_indices, float (&ratio)[2])
500 {
501  // get point vectors
502  Eigen::Vector3f u = (*target_)[base_indices[1]].getVector3fMap() -
503  (*target_)[base_indices[0]].getVector3fMap();
504  Eigen::Vector3f v = (*target_)[base_indices[3]].getVector3fMap() -
505  (*target_)[base_indices[2]].getVector3fMap();
506  Eigen::Vector3f w = (*target_)[base_indices[0]].getVector3fMap() -
507  (*target_)[base_indices[2]].getVector3fMap();
508 
509  // calculate segment distances
510  float a = u.dot(u);
511  float b = u.dot(v);
512  float c = v.dot(v);
513  float d = u.dot(w);
514  float e = v.dot(w);
515  float D = a * c - b * b;
516  float sN = 0.f, sD = D;
517  float tN = 0.f, tD = D;
518 
519  // check segments
520  if (D < small_error_) {
521  sN = 0.f;
522  sD = 1.f;
523  tN = e;
524  tD = c;
525  }
526  else {
527  sN = (b * e - c * d);
528  tN = (a * e - b * d);
529 
530  if (sN < 0.f) {
531  sN = 0.f;
532  tN = e;
533  tD = c;
534  }
535  else if (sN > sD) {
536  sN = sD;
537  tN = e + b;
538  tD = c;
539  }
540  }
541 
542  if (tN < 0.f) {
543  tN = 0.f;
544 
545  if (-d < 0.f)
546  sN = 0.f;
547 
548  else if (-d > a)
549  sN = sD;
550 
551  else {
552  sN = -d;
553  sD = a;
554  }
555  }
556 
557  else if (tN > tD) {
558  tN = tD;
559 
560  if ((-d + b) < 0.f)
561  sN = 0.f;
562 
563  else if ((-d + b) > a)
564  sN = sD;
565 
566  else {
567  sN = (-d + b);
568  sD = a;
569  }
570  }
571 
572  // set intersection ratios
573  ratio[0] = (std::abs(sN) < small_error_) ? 0.f : sN / sD;
574  ratio[1] = (std::abs(tN) < small_error_) ? 0.f : tN / tD;
575 
576  Eigen::Vector3f x = w + (ratio[0] * u) - (ratio[1] * v);
577  return (x.norm());
578 }
579 
580 ///////////////////////////////////////////////////////////////////////////////////////////
581 template <typename PointSource, typename PointTarget, typename NormalT, typename Scalar>
582 int
584  bruteForceCorrespondences(int idx1, int idx2, pcl::Correspondences& pairs)
585 {
586  const float max_norm_diff = 0.5f * max_norm_diff_ * M_PI / 180.f;
587 
588  // calculate reference segment distance and normal angle
589  float ref_dist = pcl::euclideanDistance((*target_)[idx1], (*target_)[idx2]);
590  float ref_norm_angle =
591  (use_normals_ ? ((*target_normals_)[idx1].getNormalVector3fMap() -
592  (*target_normals_)[idx2].getNormalVector3fMap())
593  .norm()
594  : 0.f);
595 
596  // loop over all pairs of points in source point cloud
597  auto it_out = source_indices_->begin(), it_out_e = source_indices_->end() - 1;
598  auto it_in_e = source_indices_->end();
599  for (; it_out != it_out_e; it_out++) {
600  auto it_in = it_out + 1;
601  const PointSource* pt1 = &(*input_)[*it_out];
602  for (; it_in != it_in_e; it_in++) {
603  const PointSource* pt2 = &(*input_)[*it_in];
604 
605  // check point distance compared to reference dist (from base)
606  float dist = pcl::euclideanDistance(*pt1, *pt2);
607  if (std::abs(dist - ref_dist) < max_pair_diff_) {
608  // add here normal evaluation if normals are given
609  if (use_normals_) {
610  const NormalT* pt1_n = &((*source_normals_)[*it_out]);
611  const NormalT* pt2_n = &((*source_normals_)[*it_in]);
612 
613  float norm_angle_1 =
614  (pt1_n->getNormalVector3fMap() - pt2_n->getNormalVector3fMap()).norm();
615  float norm_angle_2 =
616  (pt1_n->getNormalVector3fMap() + pt2_n->getNormalVector3fMap()).norm();
617 
618  float norm_diff = std::min<float>(std::abs(norm_angle_1 - ref_norm_angle),
619  std::abs(norm_angle_2 - ref_norm_angle));
620  if (norm_diff > max_norm_diff)
621  continue;
622  }
623 
624  pairs.emplace_back(*it_in, *it_out, dist);
625  pairs.emplace_back(*it_out, *it_in, dist);
626  }
627  }
628  }
629 
630  // return success if at least one correspondence was found
631  return (pairs.empty() ? -1 : 0);
632 }
633 
634 ///////////////////////////////////////////////////////////////////////////////////////////
635 template <typename PointSource, typename PointTarget, typename NormalT, typename Scalar>
636 int
638  determineBaseMatches(const pcl::Indices& base_indices,
639  std::vector<pcl::Indices>& matches,
640  const pcl::Correspondences& pairs_a,
641  const pcl::Correspondences& pairs_b,
642  const float (&ratio)[2])
643 {
644  // calculate edge lengths of base
645  float dist_base[4];
646  dist_base[0] =
647  pcl::euclideanDistance((*target_)[base_indices[0]], (*target_)[base_indices[2]]);
648  dist_base[1] =
649  pcl::euclideanDistance((*target_)[base_indices[0]], (*target_)[base_indices[3]]);
650  dist_base[2] =
651  pcl::euclideanDistance((*target_)[base_indices[1]], (*target_)[base_indices[2]]);
652  dist_base[3] =
653  pcl::euclideanDistance((*target_)[base_indices[1]], (*target_)[base_indices[3]]);
654 
655  // loop over first point pair correspondences and store intermediate points 'e' in new
656  // point cloud
657  PointCloudSourcePtr cloud_e(new PointCloudSource);
658  cloud_e->resize(pairs_a.size() * 2);
659  auto it_pt = cloud_e->begin();
660  for (const auto& pair : pairs_a) {
661  const PointSource* pt1 = &((*input_)[pair.index_match]);
662  const PointSource* pt2 = &((*input_)[pair.index_query]);
663 
664  // calculate intermediate points using both ratios from base (r1,r2)
665  for (int i = 0; i < 2; i++, it_pt++) {
666  it_pt->x = pt1->x + ratio[i] * (pt2->x - pt1->x);
667  it_pt->y = pt1->y + ratio[i] * (pt2->y - pt1->y);
668  it_pt->z = pt1->z + ratio[i] * (pt2->z - pt1->z);
669  }
670  }
671 
672  // initialize new kd tree of intermediate points from first point pair correspondences
674  tree_e->setInputCloud(cloud_e);
675 
676  pcl::Indices ids;
677  std::vector<float> dists_sqr;
678 
679  // loop over second point pair correspondences
680  for (const auto& pair : pairs_b) {
681  const PointTarget* pt1 = &((*input_)[pair.index_match]);
682  const PointTarget* pt2 = &((*input_)[pair.index_query]);
683 
684  // calculate intermediate points using both ratios from base (r1,r2)
685  for (const float& r : ratio) {
686  PointTarget pt_e;
687  pt_e.x = pt1->x + r * (pt2->x - pt1->x);
688  pt_e.y = pt1->y + r * (pt2->y - pt1->y);
689  pt_e.z = pt1->z + r * (pt2->z - pt1->z);
690 
691  // search for corresponding intermediate points
692  tree_e->radiusSearch(pt_e, coincidation_limit_, ids, dists_sqr);
693  for (const auto& id : ids) {
694  pcl::Indices match_indices(4);
695 
696  match_indices[0] =
697  pairs_a[static_cast<int>(std::floor((id / 2.f)))].index_match;
698  match_indices[1] =
699  pairs_a[static_cast<int>(std::floor((id / 2.f)))].index_query;
700  match_indices[2] = pair.index_match;
701  match_indices[3] = pair.index_query;
702  if (match_indices[0] == match_indices[2] ||
703  match_indices[0] == match_indices[3] ||
704  match_indices[1] == match_indices[2] ||
705  match_indices[1] == match_indices[3])
706  continue;
707 
708  // EDITED: added coarse check of match based on edge length (due to rigid-body )
709  if (checkBaseMatch(match_indices, dist_base) < 0)
710  continue;
711 
712  matches.push_back(match_indices);
713  }
714  }
715  }
716 
717  // return unsuccessful if no match was found
718  if (matches.empty()) {
719  PCL_DEBUG("[%s::determineBaseMatches] no matches found\n", reg_name_.c_str());
720  return -1;
721  }
722  else {
723  PCL_DEBUG("[%s::determineBaseMatches] found %zu matches\n",
724  reg_name_.c_str(),
725  matches.size());
726  return 0;
727  }
728 }
729 
730 ///////////////////////////////////////////////////////////////////////////////////////////
731 template <typename PointSource, typename PointTarget, typename NormalT, typename Scalar>
732 int
734  checkBaseMatch(const pcl::Indices& match_indices, const float (&dist_ref)[4])
735 {
736  float d0 =
737  pcl::euclideanDistance((*input_)[match_indices[0]], (*input_)[match_indices[2]]);
738  float d1 =
739  pcl::euclideanDistance((*input_)[match_indices[0]], (*input_)[match_indices[3]]);
740  float d2 =
741  pcl::euclideanDistance((*input_)[match_indices[1]], (*input_)[match_indices[2]]);
742  float d3 =
743  pcl::euclideanDistance((*input_)[match_indices[1]], (*input_)[match_indices[3]]);
744 
745  // check edge distances of match w.r.t the base
746  return (std::abs(d0 - dist_ref[0]) < max_edge_diff_ &&
747  std::abs(d1 - dist_ref[1]) < max_edge_diff_ &&
748  std::abs(d2 - dist_ref[2]) < max_edge_diff_ &&
749  std::abs(d3 - dist_ref[3]) < max_edge_diff_)
750  ? 0
751  : -1;
752 }
753 
754 ///////////////////////////////////////////////////////////////////////////////////////////
755 template <typename PointSource, typename PointTarget, typename NormalT, typename Scalar>
756 void
758  handleMatches(const pcl::Indices& base_indices,
759  std::vector<pcl::Indices>& matches,
760  MatchingCandidates& candidates)
761 {
762  candidates.resize(1);
763  float fitness_score = std::numeric_limits<float>::max();
764 
765  // loop over all Candidate matches
766  for (auto& match : matches) {
767  Eigen::Matrix4f transformation_temp;
768  pcl::Correspondences correspondences_temp;
769  correspondences_temp.emplace_back(match[0], base_indices[0], 0.0);
770  correspondences_temp.emplace_back(match[1], base_indices[1], 0.0);
771  correspondences_temp.emplace_back(match[2], base_indices[2], 0.0);
772  correspondences_temp.emplace_back(match[3], base_indices[3], 0.0);
773 
774  // check match based on residuals of the corresponding points after
775  if (validateMatch(base_indices, match, correspondences_temp, transformation_temp) <
776  0)
777  continue;
778 
779  // check resulting using a sub sample of the source point cloud and compare to
780  // previous matches
781  if (validateTransformation(transformation_temp, fitness_score) < 0)
782  continue;
783 
784  // store best match as well as associated fitness_score and transformation
785  candidates[0].fitness_score = fitness_score;
786  candidates[0].transformation = transformation_temp;
787  correspondences_temp.erase(correspondences_temp.end() - 1);
788  candidates[0].correspondences = correspondences_temp;
789  }
790 }
791 
792 ///////////////////////////////////////////////////////////////////////////////////////////
793 template <typename PointSource, typename PointTarget, typename NormalT, typename Scalar>
794 void
796  linkMatchWithBase(const pcl::Indices& base_indices,
797  pcl::Indices& match_indices,
798  pcl::Correspondences& correspondences)
799 {
800  // calculate centroid of base and target
801  Eigen::Vector4f centre_base{0, 0, 0, 0}, centre_match{0, 0, 0, 0};
802  pcl::compute3DCentroid(*target_, base_indices, centre_base);
803  pcl::compute3DCentroid(*input_, match_indices, centre_match);
804 
805  PointTarget centre_pt_base;
806  centre_pt_base.x = centre_base[0];
807  centre_pt_base.y = centre_base[1];
808  centre_pt_base.z = centre_base[2];
809 
810  PointSource centre_pt_match;
811  centre_pt_match.x = centre_match[0];
812  centre_pt_match.y = centre_match[1];
813  centre_pt_match.z = centre_match[2];
814 
815  // find corresponding points according to their distance to the centroid
816  pcl::Indices copy = match_indices;
817 
818  auto it_match_orig = match_indices.begin();
819  for (auto it_base = base_indices.cbegin(), it_base_e = base_indices.cend();
820  it_base != it_base_e;
821  it_base++, it_match_orig++) {
822  float dist_sqr_1 =
823  pcl::squaredEuclideanDistance((*target_)[*it_base], centre_pt_base);
824  float best_diff_sqr = std::numeric_limits<float>::max();
825  int best_index = -1;
826 
827  for (const auto& match_index : copy) {
828  // calculate difference of distances to centre point
829  float dist_sqr_2 =
830  pcl::squaredEuclideanDistance((*input_)[match_index], centre_pt_match);
831  float diff_sqr = std::abs(dist_sqr_1 - dist_sqr_2);
832 
833  if (diff_sqr < best_diff_sqr) {
834  best_diff_sqr = diff_sqr;
835  best_index = match_index;
836  }
837  }
838 
839  // assign new correspondence and update indices of matched targets
840  correspondences.emplace_back(best_index, *it_base, best_diff_sqr);
841  *it_match_orig = best_index;
842  }
843 }
844 
845 ///////////////////////////////////////////////////////////////////////////////////////////
846 template <typename PointSource, typename PointTarget, typename NormalT, typename Scalar>
847 int
849  validateMatch(const pcl::Indices& base_indices,
850  const pcl::Indices& match_indices,
851  const pcl::Correspondences& correspondences,
852  Eigen::Matrix4f& transformation)
853 {
854  // only use triplet of points to simplify process (possible due to planar case)
855  pcl::Correspondences correspondences_temp = correspondences;
856  correspondences_temp.erase(correspondences_temp.end() - 1);
857 
858  // estimate transformation between correspondence set
859  transformation_estimation_->estimateRigidTransformation(
860  *input_, *target_, correspondences_temp, transformation);
861 
862  // transform base points
863  PointCloudSource match_transformed;
864  pcl::transformPointCloud(*input_, match_indices, match_transformed, transformation);
865 
866  // calculate residuals of transformation and check against maximum threshold
867  std::size_t nr_points = correspondences_temp.size();
868  float mse = 0.f;
869  for (std::size_t i = 0; i < nr_points; i++)
870  mse += pcl::squaredEuclideanDistance(match_transformed.points[i],
871  target_->points[base_indices[i]]);
872 
873  mse /= nr_points;
874  return (mse < max_mse_ ? 0 : -1);
875 }
876 
877 ///////////////////////////////////////////////////////////////////////////////////////////
878 template <typename PointSource, typename PointTarget, typename NormalT, typename Scalar>
879 int
881  validateTransformation(Eigen::Matrix4f& transformation, float& fitness_score)
882 {
883  // transform source point cloud
884  PointCloudSource source_transformed;
886  *input_, *source_indices_, source_transformed, transformation);
887 
888  std::size_t nr_points = source_transformed.size();
889  std::size_t terminate_value =
890  fitness_score > 1 ? 0
891  : static_cast<std::size_t>((1.f - fitness_score) * nr_points);
892 
893  float inlier_score_temp = 0;
894  pcl::Indices ids(1);
895  std::vector<float> dists_sqr(1);
896  auto it = source_transformed.begin();
897 
898  for (std::size_t i = 0; i < nr_points; it++, i++) {
899  // search for nearest point using kd tree search
900  tree_->nearestKSearch(*it, 1, ids, dists_sqr);
901  inlier_score_temp += (dists_sqr[0] < max_inlier_dist_sqr_ ? 1 : 0);
902 
903  // early terminating
904  if (nr_points - i + inlier_score_temp < terminate_value)
905  break;
906  }
907 
908  // check current costs and return unsuccessful if larger than previous ones
909  inlier_score_temp /= static_cast<float>(nr_points);
910  float fitness_score_temp = 1.f - inlier_score_temp;
911 
912  if (fitness_score_temp > fitness_score)
913  return (-1);
914 
915  fitness_score = fitness_score_temp;
916  return (0);
917 }
918 
919 ///////////////////////////////////////////////////////////////////////////////////////////
920 template <typename PointSource, typename PointTarget, typename NormalT, typename Scalar>
921 void
923  finalCompute(const std::vector<MatchingCandidates>& candidates)
924 {
925  // get best fitness_score over all tries
926  int nr_candidates = static_cast<int>(candidates.size());
927  int best_index = -1;
928  float best_score = std::numeric_limits<float>::max();
929  for (int i = 0; i < nr_candidates; i++) {
930  const float& fitness_score = candidates[i][0].fitness_score;
931  if (fitness_score < best_score) {
932  best_score = fitness_score;
933  best_index = i;
934  }
935  }
936  PCL_DEBUG(
937  "[%s::finalCompute] best score is %g (iteration %i), out of %zu iterations.\n",
938  reg_name_.c_str(),
939  best_score,
940  best_index,
941  candidates.size());
942 
943  // check if a valid candidate was available
944  if (!(best_index < 0)) {
945  fitness_score_ = candidates[best_index][0].fitness_score;
946  final_transformation_ = candidates[best_index][0].transformation;
947  *correspondences_ = candidates[best_index][0].correspondences;
948 
949  // here we define convergence if resulting fitness_score is below 1-threshold
950  converged_ = fitness_score_ < score_threshold_;
951  }
952 }
953 
954 ///////////////////////////////////////////////////////////////////////////////////////////
955 
956 #endif // PCL_REGISTRATION_IMPL_IA_4PCS_H_
void filter(Indices &indices)
Calls the filtering method and returns the filtered point cloud indices.
PCL base class.
Definition: pcl_base.h:70
virtual void setInputCloud(const PointCloudConstPtr &cloud)
Provide a pointer to the input dataset.
Definition: pcl_base.hpp:65
virtual void setIndices(const IndicesPtr &indices)
Provide a pointer to the vector of indices that represents the input data.
Definition: pcl_base.hpp:72
std::size_t size() const
Definition: point_cloud.h:443
shared_ptr< const PointCloud< PointT > > ConstPtr
Definition: point_cloud.h:414
RandomSample applies a random sampling with uniform probability.
Definition: random_sample.h:56
void setSeed(unsigned int seed)
Set seed of random function.
void setSample(unsigned int sample)
Set number of indices to be sampled.
Definition: random_sample.h:89
typename KdTreeReciprocal::Ptr KdTreeReciprocalPtr
Definition: registration.h:74
std::string reg_name_
The registration method name.
Definition: registration.h:548
typename PointCloudSource::Ptr PointCloudSourcePtr
Definition: registration.h:77
int ransac_iterations_
The number of iterations RANSAC should run for.
Definition: registration.h:566
TransformationEstimationPtr transformation_estimation_
A TransformationEstimation object, used to calculate the 4x4 rigid transformation.
Definition: registration.h:625
int max_iterations_
The maximum number of iterations the internal optimization should run for.
Definition: registration.h:563
void setIndices(const IndicesPtr &indices)
Provide a pointer to the vector of indices that represents the input data.
Definition: sac_model.h:324
SampleConsensusModelPlane defines a model for 3D plane segmentation.
bool computeModelCoefficients(const Indices &samples, Eigen::VectorXf &model_coefficients) const override
Check whether the given index samples can form a valid plane model, compute the model coefficients fr...
Simple stopwatch.
Definition: time.h:59
double getTimeSeconds() const
Retrieve the time in seconds spent since the last call to reset().
Definition: time.h:74
virtual void finalCompute(const std::vector< MatchingCandidates > &candidates)
Final computation of best match out of vector of best matches.
Definition: ia_fpcs.hpp:923
void setupBase(pcl::Indices &base_indices, float(&ratio)[2])
Setup the base (four coplanar points) by ordering the points and computing intersection ratios and se...
Definition: ia_fpcs.hpp:456
int selectBaseTriangle(pcl::Indices &base_indices)
Select randomly a triplet of points with large point-to-point distances.
Definition: ia_fpcs.hpp:418
virtual int bruteForceCorrespondences(int idx1, int idx2, pcl::Correspondences &pairs)
Search for corresponding point pairs given the distance between two base points.
Definition: ia_fpcs.hpp:584
int selectBase(pcl::Indices &base_indices, float(&ratio)[2])
Select an approximately coplanar set of four points from the source cloud.
Definition: ia_fpcs.hpp:352
virtual int validateTransformation(Eigen::Matrix4f &transformation, float &fitness_score)
Validate the transformation by calculating the number of inliers after transforming the source cloud.
Definition: ia_fpcs.hpp:881
virtual int determineBaseMatches(const pcl::Indices &base_indices, std::vector< pcl::Indices > &matches, const pcl::Correspondences &pairs_a, const pcl::Correspondences &pairs_b, const float(&ratio)[2])
Determine base matches by combining the point pair candidate and search for coinciding intersection p...
Definition: ia_fpcs.hpp:638
virtual void linkMatchWithBase(const pcl::Indices &base_indices, pcl::Indices &match_indices, pcl::Correspondences &correspondences)
Sets the correspondences between the base B and the match M by using the distance of each point to th...
Definition: ia_fpcs.hpp:796
virtual void handleMatches(const pcl::Indices &base_indices, std::vector< pcl::Indices > &matches, MatchingCandidates &candidates)
Method to handle current candidate matches.
Definition: ia_fpcs.hpp:758
int checkBaseMatch(const pcl::Indices &match_indices, const float(&ds)[4])
Check if outer rectangle distance of matched points fit with the base rectangle.
Definition: ia_fpcs.hpp:734
float segmentToSegmentDist(const pcl::Indices &base_indices, float(&ratio)[2])
Calculate intersection ratios and segment to segment distances of base diagonals.
Definition: ia_fpcs.hpp:499
virtual int validateMatch(const pcl::Indices &base_indices, const pcl::Indices &match_indices, const pcl::Correspondences &correspondences, Eigen::Matrix4f &transformation)
Validate the matching by computing the transformation between the source and target based on the four...
Definition: ia_fpcs.hpp:849
void computeTransformation(PointCloudSource &output, const Eigen::Matrix4f &guess) override
Rigid transformation computation method.
Definition: ia_fpcs.hpp:142
virtual bool initCompute()
Internal computation initialization.
Definition: ia_fpcs.hpp:225
TransformationEstimation3Points represents the class for transformation estimation based on:
search::KdTree is a wrapper class which inherits the pcl::KdTree class for performing search function...
Definition: kdtree.h:62
int nearestKSearch(const PointT &point, int k, Indices &k_indices, std::vector< float > &k_sqr_distances) const override
Search for the k-nearest neighbors for the given query point.
Definition: kdtree.hpp:88
bool setInputCloud(const PointCloudConstPtr &cloud, const IndicesConstPtr &indices=IndicesConstPtr()) override
Provide a pointer to the input dataset.
Definition: kdtree.hpp:76
Define standard C methods to do distance calculations.
Define methods for measuring time spent in code blocks.
void getMinMax3D(const pcl::PointCloud< PointT > &cloud, PointT &min_pt, PointT &max_pt)
Get the minimum and maximum values on each of the 3 (x-y-z) dimensions in a given pointcloud.
Definition: common.hpp:295
void transformPointCloud(const pcl::PointCloud< PointT > &cloud_in, pcl::PointCloud< PointT > &cloud_out, const Eigen::Matrix< Scalar, 4, 4 > &transform, bool copy_all_fields)
Apply a rigid transform defined by a 4x4 matrix.
Definition: transforms.hpp:221
unsigned int compute3DCentroid(ConstCloudIterator< PointT > &cloud_iterator, Eigen::Matrix< Scalar, 4, 1 > &centroid)
Compute the 3D (X-Y-Z) centroid of a set of points and return it as a 3D vector.
Definition: centroid.hpp:57
double pointToPlaneDistance(const Point &p, double a, double b, double c, double d)
Get the distance from a point to a plane (unsigned) defined by ax+by+cz+d=0.
std::vector< MatchingCandidate, Eigen::aligned_allocator< MatchingCandidate > > MatchingCandidates
void ignore(const T &...)
Utility function to eliminate unused variable warnings.
Definition: utils.h:62
float squaredEuclideanDistance(const PointType1 &p1, const PointType2 &p2)
Calculate the squared euclidean distance between the two given points.
Definition: distances.h:182
float getMeanPointDensity(const typename pcl::PointCloud< PointT >::ConstPtr &cloud, float max_dist, int nr_threads=1)
Compute the mean point density of a given point cloud.
Definition: ia_fpcs.hpp:54
std::vector< pcl::Correspondence, Eigen::aligned_allocator< pcl::Correspondence > > Correspondences
float euclideanDistance(const PointType1 &p1, const PointType2 &p2)
Calculate the euclidean distance between the two given points.
Definition: distances.h:204
IndicesAllocator<> Indices
Type used for indices in PCL.
Definition: types.h:133
shared_ptr< Indices > IndicesPtr
Definition: pcl_base.h:58
#define M_PI
Definition: pcl_macros.h:201
A point structure representing normal coordinates and the surface curvature estimate.