|
| KdTree (bool sorted=true) |
| Constructor for KdTree. More...
|
|
| ~KdTree () |
| Destructor for KdTree. More...
|
|
void | setPointRepresentation (const PointRepresentationConstPtr &point_representation) |
| Provide a pointer to the point representation to use to convert points into k-D vectors. More...
|
|
PointRepresentationConstPtr | getPointRepresentation () const |
| Get a pointer to the point representation used when converting points into k-D vectors. More...
|
|
void | setSortedResults (bool sorted_results) override |
| Sets whether the results have to be sorted or not. More...
|
|
void | setEpsilon (float eps) |
| Set the search epsilon precision (error bound) for nearest neighbors searches. More...
|
|
float | getEpsilon () const |
| Get the search epsilon precision (error bound) for nearest neighbors searches. More...
|
|
void | setInputCloud (const PointCloudConstPtr &cloud, const IndicesConstPtr &indices=IndicesConstPtr()) override |
| Provide a pointer to the input dataset. More...
|
|
int | nearestKSearch (const PointT &point, int k, Indices &k_indices, std::vector< float > &k_sqr_distances) const override |
| Search for the k-nearest neighbors for the given query point. More...
|
|
int | radiusSearch (const PointT &point, double radius, Indices &k_indices, std::vector< float > &k_sqr_distances, unsigned int max_nn=0) const override |
| Search for all the nearest neighbors of the query point in a given radius. More...
|
|
| Search (const std::string &name="", bool sorted=false) |
| Constructor. More...
|
|
virtual | ~Search () |
| Destructor. More...
|
|
virtual const std::string & | getName () const |
| Returns the search method name. More...
|
|
virtual bool | getSortedResults () |
| Gets whether the results should be sorted (ascending in the distance) or not Otherwise the results may be returned in any order. More...
|
|
virtual void | setInputCloud (const PointCloudConstPtr &cloud, const IndicesConstPtr &indices=IndicesConstPtr()) |
| Pass the input dataset that the search will be performed on. More...
|
|
virtual PointCloudConstPtr | getInputCloud () const |
| Get a pointer to the input point cloud dataset. More...
|
|
virtual IndicesConstPtr | getIndices () const |
| Get a pointer to the vector of indices used. More...
|
|
template<typename PointTDiff > |
int | nearestKSearchT (const PointTDiff &point, int k, Indices &k_indices, std::vector< float > &k_sqr_distances) const |
| Search for k-nearest neighbors for the given query point. More...
|
|
virtual int | nearestKSearch (const PointCloud &cloud, index_t index, int k, Indices &k_indices, std::vector< float > &k_sqr_distances) const |
| Search for k-nearest neighbors for the given query point. More...
|
|
virtual int | nearestKSearch (index_t index, int k, Indices &k_indices, std::vector< float > &k_sqr_distances) const |
| Search for k-nearest neighbors for the given query point (zero-copy). More...
|
|
virtual void | nearestKSearch (const PointCloud &cloud, const Indices &indices, int k, std::vector< Indices > &k_indices, std::vector< std::vector< float > > &k_sqr_distances) const |
| Search for the k-nearest neighbors for the given query point. More...
|
|
template<typename PointTDiff > |
void | nearestKSearchT (const pcl::PointCloud< PointTDiff > &cloud, const Indices &indices, int k, std::vector< Indices > &k_indices, std::vector< std::vector< float > > &k_sqr_distances) const |
| Search for the k-nearest neighbors for the given query point. More...
|
|
template<typename PointTDiff > |
int | radiusSearchT (const PointTDiff &point, double radius, Indices &k_indices, std::vector< float > &k_sqr_distances, unsigned int max_nn=0) const |
| Search for all the nearest neighbors of the query point in a given radius. More...
|
|
virtual int | radiusSearch (const PointCloud &cloud, index_t index, double radius, Indices &k_indices, std::vector< float > &k_sqr_distances, unsigned int max_nn=0) const |
| Search for all the nearest neighbors of the query point in a given radius. More...
|
|
virtual int | radiusSearch (index_t index, double radius, Indices &k_indices, std::vector< float > &k_sqr_distances, unsigned int max_nn=0) const |
| Search for all the nearest neighbors of the query point in a given radius (zero-copy). More...
|
|
virtual void | radiusSearch (const PointCloud &cloud, const Indices &indices, double radius, std::vector< Indices > &k_indices, std::vector< std::vector< float > > &k_sqr_distances, unsigned int max_nn=0) const |
| Search for all the nearest neighbors of the query point in a given radius. More...
|
|
template<typename PointTDiff > |
void | radiusSearchT (const pcl::PointCloud< PointTDiff > &cloud, const Indices &indices, double radius, std::vector< Indices > &k_indices, std::vector< std::vector< float > > &k_sqr_distances, unsigned int max_nn=0) const |
| Search for all the nearest neighbors of the query points in a given radius. More...
|
|
template<typename PointT, class Tree = pcl::KdTreeFLANN<PointT>>
class pcl::search::KdTree< PointT, Tree >
search::KdTree is a wrapper class which inherits the pcl::KdTree class for performing search functions using KdTree structure.
KdTree is a generic type of 3D spatial locator using kD-tree structures. The class is making use of the FLANN (Fast Library for Approximate Nearest Neighbor) project by Marius Muja and David Lowe.
- Author
- Radu B. Rusu
Definition at line 61 of file kdtree.h.