Point Cloud Library (PCL)  1.14.1-dev
gicp.hpp
1 /*
2  * Software License Agreement (BSD License)
3  *
4  * Point Cloud Library (PCL) - www.pointclouds.org
5  * Copyright (c) 2010, Willow Garage, Inc.
6  * Copyright (c) 2012-, Open Perception, Inc.
7  *
8  * All rights reserved.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  *
14  * * Redistributions of source code must retain the above copyright
15  * notice, this list of conditions and the following disclaimer.
16  * * Redistributions in binary form must reproduce the above
17  * copyright notice, this list of conditions and the following
18  * disclaimer in the documentation and/or other materials provided
19  * with the distribution.
20  * * Neither the name of the copyright holder(s) nor the names of its
21  * contributors may be used to endorse or promote products derived
22  * from this software without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
25  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
26  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
27  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
28  * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
29  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
30  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
31  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
32  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
34  * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35  * POSSIBILITY OF SUCH DAMAGE.
36  *
37  * $Id$
38  *
39  */
40 
41 #ifndef PCL_REGISTRATION_IMPL_GICP_HPP_
42 #define PCL_REGISTRATION_IMPL_GICP_HPP_
43 
44 #include <pcl/registration/exceptions.h>
45 
46 namespace pcl {
47 
48 template <typename PointSource, typename PointTarget, typename Scalar>
49 void
51  unsigned int nr_threads)
52 {
53 #ifdef _OPENMP
54  if (nr_threads == 0)
55  threads_ = omp_get_num_procs();
56  else
57  threads_ = nr_threads;
58  PCL_DEBUG("[pcl::GeneralizedIterativeClosestPoint::setNumberOfThreads] Setting "
59  "number of threads to %u.\n",
60  threads_);
61 #else
62  threads_ = 1;
63  if (nr_threads != 1)
64  PCL_WARN("[pcl::GeneralizedIterativeClosestPoint::setNumberOfThreads] "
65  "Parallelization is requested, but OpenMP is not available! Continuing "
66  "without parallelization.\n");
67 #endif // _OPENMP
68 }
69 
70 template <typename PointSource, typename PointTarget, typename Scalar>
71 template <typename PointT>
72 void
74  typename pcl::PointCloud<PointT>::ConstPtr cloud,
75  const typename pcl::search::KdTree<PointT>::Ptr kdtree,
76  MatricesVector& cloud_covariances)
77 {
78  if (k_correspondences_ > static_cast<int>(cloud->size())) {
79  PCL_ERROR("[pcl::GeneralizedIterativeClosestPoint::computeCovariances] Number or "
80  "points in cloud (%lu) is less than k_correspondences_ (%lu)!\n",
81  cloud->size(),
82  k_correspondences_);
83  return;
84  }
85 
86  Eigen::Vector3d mean;
87  Eigen::Matrix3d cov;
88  pcl::Indices nn_indices(k_correspondences_);
89  std::vector<float> nn_dist_sq(k_correspondences_);
90 
91  // We should never get there but who knows
92  if (cloud_covariances.size() < cloud->size())
93  cloud_covariances.resize(cloud->size());
94 
95 #pragma omp parallel for num_threads(threads_) schedule(dynamic, 32) \
96  shared(cloud, cloud_covariances) firstprivate(mean, cov, nn_indices, nn_dist_sq)
97  for (std::ptrdiff_t i = 0; i < static_cast<std::ptrdiff_t>(cloud->size()); ++i) {
98  const PointT& query_point = (*cloud)[i];
99  // Zero out the cov and mean
100  cov.setZero();
101  mean.setZero();
102 
103  // Search for the K nearest neighbours
104  kdtree->nearestKSearch(query_point, k_correspondences_, nn_indices, nn_dist_sq);
105 
106  // Find the covariance matrix
107  for (int j = 0; j < k_correspondences_; j++) {
108  // de-mean neighbourhood to avoid inaccuracies when far away from origin
109  const double ptx = (*cloud)[nn_indices[j]].x - query_point.x,
110  pty = (*cloud)[nn_indices[j]].y - query_point.y,
111  ptz = (*cloud)[nn_indices[j]].z - query_point.z;
112 
113  mean[0] += ptx;
114  mean[1] += pty;
115  mean[2] += ptz;
116 
117  cov(0, 0) += ptx * ptx;
118 
119  cov(1, 0) += pty * ptx;
120  cov(1, 1) += pty * pty;
121 
122  cov(2, 0) += ptz * ptx;
123  cov(2, 1) += ptz * pty;
124  cov(2, 2) += ptz * ptz;
125  }
126 
127  mean /= static_cast<double>(k_correspondences_);
128  // Get the actual covariance
129  for (int k = 0; k < 3; k++)
130  for (int l = 0; l <= k; l++) {
131  cov(k, l) /= static_cast<double>(k_correspondences_);
132  cov(k, l) -= mean[k] * mean[l];
133  cov(l, k) = cov(k, l);
134  }
135 
136  // Compute the SVD (covariance matrix is symmetric so U = V')
137  Eigen::JacobiSVD<Eigen::Matrix3d> svd(cov, Eigen::ComputeFullU);
138  cov.setZero();
139  Eigen::Matrix3d U = svd.matrixU();
140  // Reconstitute the covariance matrix with modified singular values using the column
141  // // vectors in V.
142  for (int k = 0; k < 3; k++) {
143  Eigen::Vector3d col = U.col(k);
144  double v = 1.; // biggest 2 singular values replaced by 1
145  if (k == 2) // smallest singular value replaced by gicp_epsilon
146  v = gicp_epsilon_;
147  cov += v * col * col.transpose();
148  }
149  cloud_covariances[i] = cov;
150  }
151 }
152 
153 template <typename PointSource, typename PointTarget, typename Scalar>
154 void
156  double phi,
157  double theta,
158  double psi,
159  Eigen::Matrix3d& dR_dPhi,
160  Eigen::Matrix3d& dR_dTheta,
161  Eigen::Matrix3d& dR_dPsi) const
162 {
163  const double cphi = std::cos(phi), sphi = std::sin(phi);
164  const double ctheta = std::cos(theta), stheta = std::sin(theta);
165  const double cpsi = std::cos(psi), spsi = std::sin(psi);
166  dR_dPhi(0, 0) = 0.;
167  dR_dPhi(1, 0) = 0.;
168  dR_dPhi(2, 0) = 0.;
169 
170  dR_dPhi(0, 1) = sphi * spsi + cphi * cpsi * stheta;
171  dR_dPhi(1, 1) = -cpsi * sphi + cphi * spsi * stheta;
172  dR_dPhi(2, 1) = cphi * ctheta;
173 
174  dR_dPhi(0, 2) = cphi * spsi - cpsi * sphi * stheta;
175  dR_dPhi(1, 2) = -cphi * cpsi - sphi * spsi * stheta;
176  dR_dPhi(2, 2) = -ctheta * sphi;
177 
178  dR_dTheta(0, 0) = -cpsi * stheta;
179  dR_dTheta(1, 0) = -spsi * stheta;
180  dR_dTheta(2, 0) = -ctheta;
181 
182  dR_dTheta(0, 1) = cpsi * ctheta * sphi;
183  dR_dTheta(1, 1) = ctheta * sphi * spsi;
184  dR_dTheta(2, 1) = -sphi * stheta;
185 
186  dR_dTheta(0, 2) = cphi * cpsi * ctheta;
187  dR_dTheta(1, 2) = cphi * ctheta * spsi;
188  dR_dTheta(2, 2) = -cphi * stheta;
189 
190  dR_dPsi(0, 0) = -ctheta * spsi;
191  dR_dPsi(1, 0) = cpsi * ctheta;
192  dR_dPsi(2, 0) = 0.;
193 
194  dR_dPsi(0, 1) = -cphi * cpsi - sphi * spsi * stheta;
195  dR_dPsi(1, 1) = -cphi * spsi + cpsi * sphi * stheta;
196  dR_dPsi(2, 1) = 0.;
197 
198  dR_dPsi(0, 2) = cpsi * sphi - cphi * spsi * stheta;
199  dR_dPsi(1, 2) = sphi * spsi + cphi * cpsi * stheta;
200  dR_dPsi(2, 2) = 0.;
201 }
202 
203 template <typename PointSource, typename PointTarget, typename Scalar>
204 void
206  const Vector6d& x, const Eigen::Matrix3d& dCost_dR_T, Vector6d& g) const
207 {
208  Eigen::Matrix3d dR_dPhi;
209  Eigen::Matrix3d dR_dTheta;
210  Eigen::Matrix3d dR_dPsi;
211  getRDerivatives(x[3], x[4], x[5], dR_dPhi, dR_dTheta, dR_dPsi);
212 
213  g[3] = (dR_dPhi * dCost_dR_T).trace();
214  g[4] = (dR_dTheta * dCost_dR_T).trace();
215  g[5] = (dR_dPsi * dCost_dR_T).trace();
216 }
217 
218 template <typename PointSource, typename PointTarget, typename Scalar>
219 void
221  double phi,
222  double theta,
223  double psi,
224  Eigen::Matrix3d& ddR_dPhi_dPhi,
225  Eigen::Matrix3d& ddR_dPhi_dTheta,
226  Eigen::Matrix3d& ddR_dPhi_dPsi,
227  Eigen::Matrix3d& ddR_dTheta_dTheta,
228  Eigen::Matrix3d& ddR_dTheta_dPsi,
229  Eigen::Matrix3d& ddR_dPsi_dPsi) const
230 {
231  const double sphi = std::sin(phi), stheta = std::sin(theta), spsi = std::sin(psi);
232  const double cphi = std::cos(phi), ctheta = std::cos(theta), cpsi = std::cos(psi);
233  ddR_dPhi_dPhi(0, 0) = 0.0;
234  ddR_dPhi_dPhi(1, 0) = 0.0;
235  ddR_dPhi_dPhi(2, 0) = 0.0;
236  ddR_dPhi_dPhi(0, 1) = -cpsi * stheta * sphi + spsi * cphi;
237  ddR_dPhi_dPhi(1, 1) = -cpsi * cphi - spsi * stheta * sphi;
238  ddR_dPhi_dPhi(2, 1) = -ctheta * sphi;
239  ddR_dPhi_dPhi(0, 2) = -spsi * sphi - cpsi * stheta * cphi;
240  ddR_dPhi_dPhi(1, 2) = -spsi * stheta * cphi + cpsi * sphi;
241  ddR_dPhi_dPhi(2, 2) = -ctheta * cphi;
242 
243  ddR_dPhi_dTheta(0, 0) = 0.0;
244  ddR_dPhi_dTheta(1, 0) = 0.0;
245  ddR_dPhi_dTheta(2, 0) = 0.0;
246  ddR_dPhi_dTheta(0, 1) = cpsi * ctheta * cphi;
247  ddR_dPhi_dTheta(1, 1) = spsi * ctheta * cphi;
248  ddR_dPhi_dTheta(2, 1) = -stheta * cphi;
249  ddR_dPhi_dTheta(0, 2) = -cpsi * ctheta * sphi;
250  ddR_dPhi_dTheta(1, 2) = -spsi * ctheta * sphi;
251  ddR_dPhi_dTheta(2, 2) = stheta * sphi;
252 
253  ddR_dPhi_dPsi(0, 0) = 0.0;
254  ddR_dPhi_dPsi(1, 0) = 0.0;
255  ddR_dPhi_dPsi(2, 0) = 0.0;
256  ddR_dPhi_dPsi(0, 1) = -spsi * stheta * cphi + cpsi * sphi;
257  ddR_dPhi_dPsi(1, 1) = spsi * sphi + cpsi * stheta * cphi;
258  ddR_dPhi_dPsi(2, 1) = 0.0;
259  ddR_dPhi_dPsi(0, 2) = cpsi * cphi + spsi * stheta * sphi;
260  ddR_dPhi_dPsi(1, 2) = -cpsi * stheta * sphi + spsi * cphi;
261  ddR_dPhi_dPsi(2, 2) = 0.0;
262 
263  ddR_dTheta_dTheta(0, 0) = -cpsi * ctheta;
264  ddR_dTheta_dTheta(1, 0) = -spsi * ctheta;
265  ddR_dTheta_dTheta(2, 0) = stheta;
266  ddR_dTheta_dTheta(0, 1) = -cpsi * stheta * sphi;
267  ddR_dTheta_dTheta(1, 1) = -spsi * stheta * sphi;
268  ddR_dTheta_dTheta(2, 1) = -ctheta * sphi;
269  ddR_dTheta_dTheta(0, 2) = -cpsi * stheta * cphi;
270  ddR_dTheta_dTheta(1, 2) = -spsi * stheta * cphi;
271  ddR_dTheta_dTheta(2, 2) = -ctheta * cphi;
272 
273  ddR_dTheta_dPsi(0, 0) = spsi * stheta;
274  ddR_dTheta_dPsi(1, 0) = -cpsi * stheta;
275  ddR_dTheta_dPsi(2, 0) = 0.0;
276  ddR_dTheta_dPsi(0, 1) = -spsi * ctheta * sphi;
277  ddR_dTheta_dPsi(1, 1) = cpsi * ctheta * sphi;
278  ddR_dTheta_dPsi(2, 1) = 0.0;
279  ddR_dTheta_dPsi(0, 2) = -spsi * ctheta * cphi;
280  ddR_dTheta_dPsi(1, 2) = cpsi * ctheta * cphi;
281  ddR_dTheta_dPsi(2, 2) = 0.0;
282 
283  ddR_dPsi_dPsi(0, 0) = -cpsi * ctheta;
284  ddR_dPsi_dPsi(1, 0) = -spsi * ctheta;
285  ddR_dPsi_dPsi(2, 0) = 0.0;
286  ddR_dPsi_dPsi(0, 1) = -cpsi * stheta * sphi + spsi * cphi;
287  ddR_dPsi_dPsi(1, 1) = -cpsi * cphi - spsi * stheta * sphi;
288  ddR_dPsi_dPsi(2, 1) = 0.0;
289  ddR_dPsi_dPsi(0, 2) = -spsi * sphi - cpsi * stheta * cphi;
290  ddR_dPsi_dPsi(1, 2) = -spsi * stheta * cphi + cpsi * sphi;
291  ddR_dPsi_dPsi(2, 2) = 0.0;
292 }
293 
294 template <typename PointSource, typename PointTarget, typename Scalar>
295 void
298  const pcl::Indices& indices_src,
299  const PointCloudTarget& cloud_tgt,
300  const pcl::Indices& indices_tgt,
301  Matrix4& transformation_matrix)
302 {
303  // need at least min_number_correspondences_ samples
304  if (indices_src.size() < min_number_correspondences_) {
305  PCL_THROW_EXCEPTION(
307  "[pcl::GeneralizedIterativeClosestPoint::estimateRigidTransformationBFGS] Need "
308  "at least "
309  << min_number_correspondences_
310  << " points to estimate a transform! "
311  "Source and target have "
312  << indices_src.size() << " points!");
313  return;
314  }
315  // Set the initial solution
316  Vector6d x = Vector6d::Zero();
317  // translation part
318  x[0] = transformation_matrix(0, 3);
319  x[1] = transformation_matrix(1, 3);
320  x[2] = transformation_matrix(2, 3);
321  // rotation part (Z Y X euler angles convention)
322  // see: https://en.wikipedia.org/wiki/Rotation_matrix#General_rotations
323  x[3] = std::atan2(transformation_matrix(2, 1), transformation_matrix(2, 2));
324  x[4] = asin(-transformation_matrix(2, 0));
325  x[5] = std::atan2(transformation_matrix(1, 0), transformation_matrix(0, 0));
326 
327  // Set temporary pointers
328  tmp_src_ = &cloud_src;
329  tmp_tgt_ = &cloud_tgt;
330  tmp_idx_src_ = &indices_src;
331  tmp_idx_tgt_ = &indices_tgt;
332 
333  // Optimize using BFGS
334  OptimizationFunctorWithIndices functor(this);
336  bfgs.parameters.sigma = 0.01;
337  bfgs.parameters.rho = 0.01;
338  bfgs.parameters.tau1 = 9;
339  bfgs.parameters.tau2 = 0.05;
340  bfgs.parameters.tau3 = 0.5;
341  bfgs.parameters.order = 3;
342 
343  int inner_iterations_ = 0;
344  int result = bfgs.minimizeInit(x);
345  result = BFGSSpace::Running;
346  do {
347  inner_iterations_++;
348  result = bfgs.minimizeOneStep(x);
349  if (result) {
350  break;
351  }
352  result = bfgs.testGradient();
353  } while (result == BFGSSpace::Running && inner_iterations_ < max_inner_iterations_);
354  if (result == BFGSSpace::NoProgress || result == BFGSSpace::Success ||
355  inner_iterations_ == max_inner_iterations_) {
356  PCL_DEBUG("[pcl::registration::TransformationEstimationBFGS::"
357  "estimateRigidTransformation]");
358  PCL_DEBUG("BFGS solver finished with exit code %i \n", result);
359  transformation_matrix.setIdentity();
360  applyState(transformation_matrix, x);
361  }
362  else
363  PCL_THROW_EXCEPTION(
365  "[pcl::" << getClassName()
366  << "::TransformationEstimationBFGS::estimateRigidTransformation] BFGS "
367  "solver didn't converge!");
368 }
369 
370 template <typename PointSource, typename PointTarget, typename Scalar>
371 void
374  const pcl::Indices& indices_src,
375  const PointCloudTarget& cloud_tgt,
376  const pcl::Indices& indices_tgt,
377  Matrix4& transformation_matrix)
378 {
379  // need at least min_number_correspondences_ samples
380  if (indices_src.size() < min_number_correspondences_) {
381  PCL_THROW_EXCEPTION(NotEnoughPointsException,
382  "[pcl::GeneralizedIterativeClosestPoint::"
383  "estimateRigidTransformationNewton] Need "
384  "at least "
385  << min_number_correspondences_
386  << " points to estimate a transform! "
387  "Source and target have "
388  << indices_src.size() << " points!");
389  return;
390  }
391  // Set the initial solution
392  Vector6d x = Vector6d::Zero();
393  // translation part
394  x[0] = transformation_matrix(0, 3);
395  x[1] = transformation_matrix(1, 3);
396  x[2] = transformation_matrix(2, 3);
397  // rotation part (Z Y X euler angles convention)
398  // see: https://en.wikipedia.org/wiki/Rotation_matrix#General_rotations
399  x[3] = std::atan2(transformation_matrix(2, 1), transformation_matrix(2, 2));
400  x[4] = std::asin(
401  std::min<double>(1.0, std::max<double>(-1.0, -transformation_matrix(2, 0))));
402  x[5] = std::atan2(transformation_matrix(1, 0), transformation_matrix(0, 0));
403 
404  // Set temporary pointers
405  tmp_src_ = &cloud_src;
406  tmp_tgt_ = &cloud_tgt;
407  tmp_idx_src_ = &indices_src;
408  tmp_idx_tgt_ = &indices_tgt;
409 
410  // Optimize using Newton
411  OptimizationFunctorWithIndices functor(this);
412  Eigen::Matrix<double, 6, 6> hessian;
413  Eigen::Matrix<double, 6, 1> gradient;
414  double current_x_value = functor(x);
415  functor.dfddf(x, gradient, hessian);
416  Eigen::Matrix<double, 6, 1> delta;
417  int inner_iterations_ = 0;
418  do {
419  ++inner_iterations_;
420  // compute descent direction from hessian and gradient. Take special measures if
421  // hessian is not positive-definite (positive Eigenvalues)
422  Eigen::SelfAdjointEigenSolver<Eigen::Matrix<double, 6, 6>> eigensolver(hessian);
423  Eigen::Matrix<double, 6, 6> inverted_eigenvalues =
424  Eigen::Matrix<double, 6, 6>::Zero();
425  for (int i = 0; i < 6; ++i) {
426  const double ev = eigensolver.eigenvalues()[i];
427  if (ev < 0)
428  inverted_eigenvalues(i, i) = 1.0 / eigensolver.eigenvalues()[5];
429  else
430  inverted_eigenvalues(i, i) = 1.0 / ev;
431  }
432  delta = eigensolver.eigenvectors() * inverted_eigenvalues *
433  eigensolver.eigenvectors().transpose() * gradient;
434 
435  // simple line search to guarantee a decrease in the function value
436  double alpha = 1.0;
437  double candidate_x_value;
438  bool improvement_found = false;
439  for (int i = 0; i < 10; ++i, alpha /= 2) {
440  Vector6d candidate_x = x - alpha * delta;
441  candidate_x_value = functor(candidate_x);
442  if (candidate_x_value < current_x_value) {
443  PCL_DEBUG("[estimateRigidTransformationNewton] Using stepsize=%g, function "
444  "value previously: %g, now: %g, "
445  "improvement: %g\n",
446  alpha,
447  current_x_value,
448  candidate_x_value,
449  current_x_value - candidate_x_value);
450  x = candidate_x;
451  current_x_value = candidate_x_value;
452  improvement_found = true;
453  break;
454  }
455  }
456  if (!improvement_found) {
457  PCL_DEBUG("[estimateRigidTransformationNewton] finishing because no progress\n");
458  break;
459  }
460  functor.dfddf(x, gradient, hessian);
461  if (gradient.head<3>().norm() < translation_gradient_tolerance_ &&
462  gradient.tail<3>().norm() < rotation_gradient_tolerance_) {
463  PCL_DEBUG("[estimateRigidTransformationNewton] finishing because gradient below "
464  "threshold: translation: %g<%g, rotation: %g<%g\n",
465  gradient.head<3>().norm(),
466  translation_gradient_tolerance_,
467  gradient.tail<3>().norm(),
468  rotation_gradient_tolerance_);
469  break;
470  }
471  } while (inner_iterations_ < max_inner_iterations_);
472  PCL_DEBUG("[estimateRigidTransformationNewton] solver finished after %i iterations "
473  "(of max %i)\n",
474  inner_iterations_,
475  max_inner_iterations_);
476  transformation_matrix.setIdentity();
477  applyState(transformation_matrix, x);
478 }
479 
480 template <typename PointSource, typename PointTarget, typename Scalar>
481 inline double
484 {
485  Matrix4 transformation_matrix = gicp_->base_transformation_;
486  gicp_->applyState(transformation_matrix, x);
487  double f = 0;
488  int m = static_cast<int>(gicp_->tmp_idx_src_->size());
489  for (int i = 0; i < m; ++i) {
490  // The last coordinate, p_src[3] is guaranteed to be set to 1.0 in registration.hpp
491  Vector4fMapConst p_src =
492  (*gicp_->tmp_src_)[(*gicp_->tmp_idx_src_)[i]].getVector4fMap();
493  // The last coordinate, p_tgt[3] is guaranteed to be set to 1.0 in registration.hpp
494  Vector4fMapConst p_tgt =
495  (*gicp_->tmp_tgt_)[(*gicp_->tmp_idx_tgt_)[i]].getVector4fMap();
496  Eigen::Vector4f p_trans_src(transformation_matrix.template cast<float>() * p_src);
497  // Estimate the distance (cost function)
498  // The last coordinate is still guaranteed to be set to 1.0
499  // The d here is the negative of the d in the paper
500  Eigen::Vector3d d(p_trans_src[0] - p_tgt[0],
501  p_trans_src[1] - p_tgt[1],
502  p_trans_src[2] - p_tgt[2]);
503  Eigen::Vector3d Md(gicp_->mahalanobis((*gicp_->tmp_idx_src_)[i]) * d);
504  // increment= d'*Md/num_matches = d'*M*d/num_matches (we postpone
505  // 1/num_matches after the loop closes)
506  f += static_cast<double>(d.transpose() * Md);
507  }
508  return f / m;
509 }
510 
511 template <typename PointSource, typename PointTarget, typename Scalar>
512 inline void
515 {
516  Matrix4 transformation_matrix = gicp_->base_transformation_;
517  gicp_->applyState(transformation_matrix, x);
518  // Zero out g
519  g.setZero();
520  // Eigen::Vector3d g_t = g.head<3> ();
521  // the transpose of the derivative of the cost function w.r.t rotation matrix
522  Eigen::Matrix3d dCost_dR_T = Eigen::Matrix3d::Zero();
523  int m = static_cast<int>(gicp_->tmp_idx_src_->size());
524  for (int i = 0; i < m; ++i) {
525  // The last coordinate, p_src[3] is guaranteed to be set to 1.0 in registration.hpp
526  Vector4fMapConst p_src =
527  (*gicp_->tmp_src_)[(*gicp_->tmp_idx_src_)[i]].getVector4fMap();
528  // The last coordinate, p_tgt[3] is guaranteed to be set to 1.0 in registration.hpp
529  Vector4fMapConst p_tgt =
530  (*gicp_->tmp_tgt_)[(*gicp_->tmp_idx_tgt_)[i]].getVector4fMap();
531 
532  Eigen::Vector4f p_trans_src(transformation_matrix.template cast<float>() * p_src);
533  // The last coordinate is still guaranteed to be set to 1.0
534  // The d here is the negative of the d in the paper
535  Eigen::Vector3d d(p_trans_src[0] - p_tgt[0],
536  p_trans_src[1] - p_tgt[1],
537  p_trans_src[2] - p_tgt[2]);
538  // Md = M*d
539  Eigen::Vector3d Md(gicp_->mahalanobis((*gicp_->tmp_idx_src_)[i]) * d);
540  // Increment translation gradient
541  // g.head<3> ()+= 2*M*d/num_matches (we postpone 2/num_matches after the loop
542  // closes)
543  g.head<3>() += Md;
544  // Increment rotation gradient
545  p_trans_src = gicp_->base_transformation_.template cast<float>() * p_src;
546  Eigen::Vector3d p_base_src(p_trans_src[0], p_trans_src[1], p_trans_src[2]);
547  dCost_dR_T += p_base_src * Md.transpose();
548  }
549  g.head<3>() *= 2.0 / m;
550  dCost_dR_T *= 2.0 / m;
551  gicp_->computeRDerivative(x, dCost_dR_T, g);
552 }
553 
554 template <typename PointSource, typename PointTarget, typename Scalar>
555 inline void
558 {
559  Matrix4 transformation_matrix = gicp_->base_transformation_;
560  gicp_->applyState(transformation_matrix, x);
561  f = 0;
562  g.setZero();
563  // the transpose of the derivative of the cost function w.r.t rotation matrix
564  Eigen::Matrix3d dCost_dR_T = Eigen::Matrix3d::Zero();
565  const int m = static_cast<int>(gicp_->tmp_idx_src_->size());
566  for (int i = 0; i < m; ++i) {
567  // The last coordinate, p_src[3] is guaranteed to be set to 1.0 in registration.hpp
568  Vector4fMapConst p_src =
569  (*gicp_->tmp_src_)[(*gicp_->tmp_idx_src_)[i]].getVector4fMap();
570  // The last coordinate, p_tgt[3] is guaranteed to be set to 1.0 in registration.hpp
571  Vector4fMapConst p_tgt =
572  (*gicp_->tmp_tgt_)[(*gicp_->tmp_idx_tgt_)[i]].getVector4fMap();
573  Eigen::Vector4f p_trans_src(transformation_matrix.template cast<float>() * p_src);
574  // The last coordinate is still guaranteed to be set to 1.0
575  // The d here is the negative of the d in the paper
576  Eigen::Vector3d d(p_trans_src[0] - p_tgt[0],
577  p_trans_src[1] - p_tgt[1],
578  p_trans_src[2] - p_tgt[2]);
579  // Md = M*d
580  Eigen::Vector3d Md(gicp_->mahalanobis((*gicp_->tmp_idx_src_)[i]) * d);
581  // Increment total error
582  f += static_cast<double>(d.transpose() * Md);
583  // Increment translation gradient
584  // g.head<3> ()+= 2*M*d/num_matches (we postpone 2/num_matches after the loop
585  // closes)
586  g.head<3>() += Md;
587  p_trans_src = gicp_->base_transformation_.template cast<float>() * p_src;
588  Eigen::Vector3d p_base_src(p_trans_src[0], p_trans_src[1], p_trans_src[2]);
589  // Increment rotation gradient
590  dCost_dR_T += p_base_src * Md.transpose();
591  }
592  f /= static_cast<double>(m);
593  g.head<3>() *= (2.0 / m);
594  dCost_dR_T *= 2.0 / m;
595  gicp_->computeRDerivative(x, dCost_dR_T, g);
596 }
597 
598 template <typename PointSource, typename PointTarget, typename Scalar>
599 inline void
602  Vector6d& gradient,
603  Matrix6d& hessian)
604 {
605  Matrix4 transformation_matrix = gicp_->base_transformation_;
606  gicp_->applyState(transformation_matrix, x);
607  const Eigen::Matrix4f transformation_matrix_float =
608  transformation_matrix.template cast<float>();
609  const Eigen::Matrix4f base_transformation_float =
610  gicp_->base_transformation_.template cast<float>();
611  // Zero out gradient and hessian
612  gradient.setZero();
613  hessian.setZero();
614  // Helper matrices
615  Eigen::Matrix3d dR_dPhi;
616  Eigen::Matrix3d dR_dTheta;
617  Eigen::Matrix3d dR_dPsi;
618  gicp_->getRDerivatives(x[3], x[4], x[5], dR_dPhi, dR_dTheta, dR_dPsi);
619  Eigen::Matrix3d ddR_dPhi_dPhi;
620  Eigen::Matrix3d ddR_dPhi_dTheta;
621  Eigen::Matrix3d ddR_dPhi_dPsi;
622  Eigen::Matrix3d ddR_dTheta_dTheta;
623  Eigen::Matrix3d ddR_dTheta_dPsi;
624  Eigen::Matrix3d ddR_dPsi_dPsi;
625  gicp_->getR2ndDerivatives(x[3],
626  x[4],
627  x[5],
628  ddR_dPhi_dPhi,
629  ddR_dPhi_dTheta,
630  ddR_dPhi_dPsi,
631  ddR_dTheta_dTheta,
632  ddR_dTheta_dPsi,
633  ddR_dPsi_dPsi);
634  Eigen::Matrix3d dCost_dR_T = Eigen::Matrix3d::Zero();
635  Eigen::Matrix3d dCost_dR_T1 = Eigen::Matrix3d::Zero();
636  Eigen::Matrix3d dCost_dR_T2 = Eigen::Matrix3d::Zero();
637  Eigen::Matrix3d dCost_dR_T3 = Eigen::Matrix3d::Zero();
638  Eigen::Matrix3d dCost_dR_T1b = Eigen::Matrix3d::Zero();
639  Eigen::Matrix3d dCost_dR_T2b = Eigen::Matrix3d::Zero();
640  Eigen::Matrix3d dCost_dR_T3b = Eigen::Matrix3d::Zero();
641  Eigen::Matrix3d hessian_rot_phi = Eigen::Matrix3d::Zero();
642  Eigen::Matrix3d hessian_rot_theta = Eigen::Matrix3d::Zero();
643  Eigen::Matrix3d hessian_rot_psi = Eigen::Matrix3d::Zero();
644  Eigen::Matrix<double, 9, 6> hessian_rot_tmp = Eigen::Matrix<double, 9, 6>::Zero();
645 
646  int m = static_cast<int>(gicp_->tmp_idx_src_->size());
647  for (int i = 0; i < m; ++i) {
648  // The last coordinate, p_src[3] is guaranteed to be set to 1.0 in registration.hpp
649  const auto& src_idx = (*gicp_->tmp_idx_src_)[i];
650  Vector4fMapConst p_src = (*gicp_->tmp_src_)[src_idx].getVector4fMap();
651  // The last coordinate, p_tgt[3] is guaranteed to be set to 1.0 in registration.hpp
652  Vector4fMapConst p_tgt =
653  (*gicp_->tmp_tgt_)[(*gicp_->tmp_idx_tgt_)[i]].getVector4fMap();
654  Eigen::Vector4f p_trans_src(transformation_matrix_float * p_src);
655  // The last coordinate is still guaranteed to be set to 1.0
656  // The d here is the negative of the d in the paper
657  const Eigen::Vector3d d(p_trans_src[0] - p_tgt[0],
658  p_trans_src[1] - p_tgt[1],
659  p_trans_src[2] - p_tgt[2]);
660  const Eigen::Matrix3d& M = gicp_->mahalanobis(src_idx);
661  const Eigen::Vector3d Md(M * d); // Md = M*d
662  gradient.head<3>() += Md; // translation gradient
663  hessian.topLeftCorner<3, 3>() += M; // translation-translation hessian
664  p_trans_src = base_transformation_float * p_src;
665  const Eigen::Vector3d p_base_src(p_trans_src[0], p_trans_src[1], p_trans_src[2]);
666  dCost_dR_T.noalias() += p_base_src * Md.transpose();
667  dCost_dR_T1b += p_base_src[0] * M;
668  dCost_dR_T2b += p_base_src[1] * M;
669  dCost_dR_T3b += p_base_src[2] * M;
670  hessian_rot_tmp.noalias() +=
671  Eigen::Map<const Eigen::Matrix<double, 9, 1>>{M.data()} *
672  (Eigen::Matrix<double, 1, 6>() << p_base_src[0] * p_base_src[0],
673  p_base_src[0] * p_base_src[1],
674  p_base_src[0] * p_base_src[2],
675  p_base_src[1] * p_base_src[1],
676  p_base_src[1] * p_base_src[2],
677  p_base_src[2] * p_base_src[2])
678  .finished();
679  }
680  gradient.head<3>() *= 2.0 / m; // translation gradient
681  dCost_dR_T *= 2.0 / m;
682  gicp_->computeRDerivative(x, dCost_dR_T, gradient); // rotation gradient
683  hessian.topLeftCorner<3, 3>() *= 2.0 / m; // translation-translation hessian
684  // translation-rotation hessian
685  dCost_dR_T1.row(0) = dCost_dR_T1b.col(0);
686  dCost_dR_T1.row(1) = dCost_dR_T2b.col(0);
687  dCost_dR_T1.row(2) = dCost_dR_T3b.col(0);
688  dCost_dR_T2.row(0) = dCost_dR_T1b.col(1);
689  dCost_dR_T2.row(1) = dCost_dR_T2b.col(1);
690  dCost_dR_T2.row(2) = dCost_dR_T3b.col(1);
691  dCost_dR_T3.row(0) = dCost_dR_T1b.col(2);
692  dCost_dR_T3.row(1) = dCost_dR_T2b.col(2);
693  dCost_dR_T3.row(2) = dCost_dR_T3b.col(2);
694  dCost_dR_T1 *= 2.0 / m;
695  dCost_dR_T2 *= 2.0 / m;
696  dCost_dR_T3 *= 2.0 / m;
697  hessian(3, 0) = (dR_dPhi * dCost_dR_T1).trace();
698  hessian(4, 0) = (dR_dTheta * dCost_dR_T1).trace();
699  hessian(5, 0) = (dR_dPsi * dCost_dR_T1).trace();
700  hessian(3, 1) = (dR_dPhi * dCost_dR_T2).trace();
701  hessian(4, 1) = (dR_dTheta * dCost_dR_T2).trace();
702  hessian(5, 1) = (dR_dPsi * dCost_dR_T2).trace();
703  hessian(3, 2) = (dR_dPhi * dCost_dR_T3).trace();
704  hessian(4, 2) = (dR_dTheta * dCost_dR_T3).trace();
705  hessian(5, 2) = (dR_dPsi * dCost_dR_T3).trace();
706  hessian.block<3, 3>(0, 3) = hessian.block<3, 3>(3, 0).transpose();
707  // rotation-rotation hessian
708  int lookup[3][3] = {{0, 1, 2}, {1, 3, 4}, {2, 4, 5}};
709  for (int l = 0; l < 3; ++l) {
710  for (int i = 0; i < 3; ++i) {
711  double phi_tmp = 0.0, theta_tmp = 0.0, psi_tmp = 0.0;
712  for (int j = 0; j < 3; ++j) {
713  for (int k = 0; k < 3; ++k) {
714  phi_tmp += hessian_rot_tmp(3 * j + i, lookup[l][k]) * dR_dPhi(j, k);
715  theta_tmp += hessian_rot_tmp(3 * j + i, lookup[l][k]) * dR_dTheta(j, k);
716  psi_tmp += hessian_rot_tmp(3 * j + i, lookup[l][k]) * dR_dPsi(j, k);
717  }
718  }
719  hessian_rot_phi(i, l) = phi_tmp;
720  hessian_rot_theta(i, l) = theta_tmp;
721  hessian_rot_psi(i, l) = psi_tmp;
722  }
723  }
724  hessian_rot_phi *= 2.0 / m;
725  hessian_rot_theta *= 2.0 / m;
726  hessian_rot_psi *= 2.0 / m;
727  hessian(3, 3) = (dR_dPhi.transpose() * hessian_rot_phi).trace() +
728  (ddR_dPhi_dPhi * dCost_dR_T).trace();
729  hessian(3, 4) = (dR_dPhi.transpose() * hessian_rot_theta).trace() +
730  (ddR_dPhi_dTheta * dCost_dR_T).trace();
731  hessian(3, 5) = (dR_dPhi.transpose() * hessian_rot_psi).trace() +
732  (ddR_dPhi_dPsi * dCost_dR_T).trace();
733  hessian(4, 4) = (dR_dTheta.transpose() * hessian_rot_theta).trace() +
734  (ddR_dTheta_dTheta * dCost_dR_T).trace();
735  hessian(4, 5) = (dR_dTheta.transpose() * hessian_rot_psi).trace() +
736  (ddR_dTheta_dPsi * dCost_dR_T).trace();
737  hessian(5, 5) = (dR_dPsi.transpose() * hessian_rot_psi).trace() +
738  (ddR_dPsi_dPsi * dCost_dR_T).trace();
739  hessian(4, 3) = hessian(3, 4);
740  hessian(5, 3) = hessian(3, 5);
741  hessian(5, 4) = hessian(4, 5);
742 }
743 
744 template <typename PointSource, typename PointTarget, typename Scalar>
745 inline BFGSSpace::Status
748 {
749  auto translation_epsilon = gicp_->translation_gradient_tolerance_;
750  auto rotation_epsilon = gicp_->rotation_gradient_tolerance_;
751 
752  if ((translation_epsilon < 0.) || (rotation_epsilon < 0.))
754 
755  // express translation gradient as norm of translation parameters
756  auto translation_grad = g.head<3>().norm();
757 
758  // express rotation gradient as a norm of rotation parameters
759  auto rotation_grad = g.tail<3>().norm();
760 
761  if ((translation_grad < translation_epsilon) && (rotation_grad < rotation_epsilon))
762  return BFGSSpace::Success;
763 
764  return BFGSSpace::Running;
765 }
766 
767 template <typename PointSource, typename PointTarget, typename Scalar>
768 inline void
770  computeTransformation(PointCloudSource& output, const Matrix4& guess)
771 {
773  // Difference between consecutive transforms
774  double delta = 0;
775  // Get the size of the source point cloud
776  const std::size_t N = indices_->size();
777  // Set the mahalanobis matrices to identity
778  mahalanobis_.resize(N, Eigen::Matrix3d::Identity());
779  // Compute target cloud covariance matrices
780  if ((!target_covariances_) || (target_covariances_->empty())) {
781  target_covariances_.reset(new MatricesVector);
782  computeCovariances<PointTarget>(target_, tree_, *target_covariances_);
783  }
784  // Compute input cloud covariance matrices
785  if ((!input_covariances_) || (input_covariances_->empty())) {
786  input_covariances_.reset(new MatricesVector);
787  computeCovariances<PointSource>(input_, tree_reciprocal_, *input_covariances_);
788  }
789 
790  base_transformation_ = Matrix4::Identity();
791  nr_iterations_ = 0;
792  converged_ = false;
793  double dist_threshold = corr_dist_threshold_ * corr_dist_threshold_;
794  pcl::Indices nn_indices(1);
795  std::vector<float> nn_dists(1);
796 
797  pcl::transformPointCloud(output, output, guess);
798 
799  while (!converged_) {
800  std::size_t cnt = 0;
801  pcl::Indices source_indices(indices_->size());
802  pcl::Indices target_indices(indices_->size());
803 
804  // guess corresponds to base_t and transformation_ to t
805  Eigen::Matrix4d transform_R = Eigen::Matrix4d::Zero();
806  for (std::size_t i = 0; i < 4; i++)
807  for (std::size_t j = 0; j < 4; j++)
808  for (std::size_t k = 0; k < 4; k++)
809  transform_R(i, j) += static_cast<double>(transformation_(i, k)) *
810  static_cast<double>(guess(k, j));
811 
812  Eigen::Matrix3d R = transform_R.topLeftCorner<3, 3>();
813 
814  for (std::size_t i = 0; i < N; i++) {
815  PointSource query = output[i];
816  query.getVector4fMap() =
817  transformation_.template cast<float>() * query.getVector4fMap();
818 
819  if (!searchForNeighbors(query, nn_indices, nn_dists)) {
820  PCL_ERROR("[pcl::%s::computeTransformation] Unable to find a nearest neighbor "
821  "in the target dataset for point %d in the source!\n",
822  getClassName().c_str(),
823  (*indices_)[i]);
824  return;
825  }
826 
827  // Check if the distance to the nearest neighbor is smaller than the user imposed
828  // threshold
829  if (nn_dists[0] < dist_threshold) {
830  Eigen::Matrix3d& C1 = (*input_covariances_)[i];
831  Eigen::Matrix3d& C2 = (*target_covariances_)[nn_indices[0]];
832  Eigen::Matrix3d& M = mahalanobis_[i];
833  // M = R*C1
834  M = R * C1;
835  // temp = M*R' + C2 = R*C1*R' + C2
836  Eigen::Matrix3d temp = M * R.transpose();
837  temp += C2;
838  // M = temp^-1
839  M = temp.inverse();
840  source_indices[cnt] = static_cast<int>(i);
841  target_indices[cnt] = nn_indices[0];
842  cnt++;
843  }
844  }
845  // Resize to the actual number of valid correspondences
846  source_indices.resize(cnt);
847  target_indices.resize(cnt);
848  /* optimize transformation using the current assignment and Mahalanobis metrics*/
849  previous_transformation_ = transformation_;
850  // optimization right here
851  try {
852  rigid_transformation_estimation_(
853  output, source_indices, *target_, target_indices, transformation_);
854  /* compute the delta from this iteration */
855  delta = 0.;
856  for (int k = 0; k < 4; k++) {
857  for (int l = 0; l < 4; l++) {
858  double ratio = 1;
859  if (k < 3 && l < 3) // rotation part of the transform
860  ratio = 1. / rotation_epsilon_;
861  else
862  ratio = 1. / transformation_epsilon_;
863  double c_delta =
864  ratio * std::abs(previous_transformation_(k, l) - transformation_(k, l));
865  if (c_delta > delta)
866  delta = c_delta;
867  }
868  }
869  } catch (PCLException& e) {
870  PCL_DEBUG("[pcl::%s::computeTransformation] Optimization issue %s\n",
871  getClassName().c_str(),
872  e.what());
873  break;
874  }
875  nr_iterations_++;
876 
877  if (update_visualizer_ != nullptr) {
878  PointCloudSourcePtr input_transformed(new PointCloudSource);
879  pcl::transformPointCloud(output, *input_transformed, transformation_);
880  update_visualizer_(*input_transformed, source_indices, *target_, target_indices);
881  }
882 
883  // Check for convergence
884  if (nr_iterations_ >= max_iterations_ || delta < 1) {
885  converged_ = true;
886  PCL_DEBUG("[pcl::%s::computeTransformation] Convergence reached. Number of "
887  "iterations: %d out of %d. Transformation difference: %f\n",
888  getClassName().c_str(),
889  nr_iterations_,
890  max_iterations_,
891  (transformation_ - previous_transformation_).array().abs().sum());
892  previous_transformation_ = transformation_;
893  }
894  else
895  PCL_DEBUG("[pcl::%s::computeTransformation] Convergence failed\n",
896  getClassName().c_str());
897  }
898  final_transformation_ = previous_transformation_ * guess;
899 
900  PCL_DEBUG("Transformation "
901  "is:\n\t%5f\t%5f\t%5f\t%5f\n\t%5f\t%5f\t%5f\t%5f\n\t%5f\t%5f\t%5f\t%5f\n\t%"
902  "5f\t%5f\t%5f\t%5f\n",
903  final_transformation_(0, 0),
904  final_transformation_(0, 1),
905  final_transformation_(0, 2),
906  final_transformation_(0, 3),
907  final_transformation_(1, 0),
908  final_transformation_(1, 1),
909  final_transformation_(1, 2),
910  final_transformation_(1, 3),
911  final_transformation_(2, 0),
912  final_transformation_(2, 1),
913  final_transformation_(2, 2),
914  final_transformation_(2, 3),
915  final_transformation_(3, 0),
916  final_transformation_(3, 1),
917  final_transformation_(3, 2),
918  final_transformation_(3, 3));
919 
920  // Transform the point cloud
921  pcl::transformPointCloud(*input_, output, final_transformation_);
922 }
923 
924 template <typename PointSource, typename PointTarget, typename Scalar>
925 void
927  Matrix4& t, const Vector6d& x) const
928 {
929  // Z Y X euler angles convention
930  Matrix3 R = (AngleAxis(static_cast<Scalar>(x[5]), Vector3::UnitZ()) *
931  AngleAxis(static_cast<Scalar>(x[4]), Vector3::UnitY()) *
932  AngleAxis(static_cast<Scalar>(x[3]), Vector3::UnitX()))
933  .toRotationMatrix();
934  Matrix4 T = Matrix4::Identity();
935  T.template block<3, 3>(0, 0) = R;
936  T.template block<3, 1>(0, 3) = Vector3(
937  static_cast<Scalar>(x[0]), static_cast<Scalar>(x[1]), static_cast<Scalar>(x[2]));
938  t = T * t;
939 }
940 
941 } // namespace pcl
942 
943 #endif // PCL_REGISTRATION_IMPL_GICP_HPP_
BFGS stands for Broyden–Fletcher–Goldfarb–Shanno (BFGS) method for solving unconstrained nonlinear op...
Definition: bfgs.h:121
BFGSSpace::Status testGradient()
Definition: bfgs.h:476
BFGSSpace::Status minimizeInit(FVectorType &x)
Definition: bfgs.h:361
BFGSSpace::Status minimizeOneStep(FVectorType &x)
Definition: bfgs.h:393
Parameters parameters
Definition: bfgs.h:169
GeneralizedIterativeClosestPoint is an ICP variant that implements the generalized iterative closest ...
Definition: gicp.h:76
void estimateRigidTransformationBFGS(const PointCloudSource &cloud_src, const pcl::Indices &indices_src, const PointCloudTarget &cloud_tgt, const pcl::Indices &indices_tgt, Matrix4 &transformation_matrix)
Estimate a rigid rotation transformation between a source and a target point cloud using an iterative...
Definition: gicp.hpp:297
typename IterativeClosestPoint< PointSource, PointTarget, Scalar >::Matrix4 Matrix4
Definition: gicp.h:130
void applyState(Matrix4 &t, const Vector6d &x) const
compute transformation matrix from transformation matrix
Definition: gicp.hpp:926
Eigen::Matrix< double, 6, 6 > Matrix6d
Definition: gicp.h:131
typename Eigen::Matrix< Scalar, 3, 1 > Vector3
Definition: gicp.h:125
std::vector< Eigen::Matrix3d, Eigen::aligned_allocator< Eigen::Matrix3d > > MatricesVector
Definition: gicp.h:112
void computeCovariances(typename pcl::PointCloud< PointT >::ConstPtr cloud, const typename pcl::search::KdTree< PointT >::Ptr tree, MatricesVector &cloud_covariances)
compute points covariances matrices according to the K nearest neighbors.
Definition: gicp.hpp:73
void estimateRigidTransformationNewton(const PointCloudSource &cloud_src, const pcl::Indices &indices_src, const PointCloudTarget &cloud_tgt, const pcl::Indices &indices_tgt, Matrix4 &transformation_matrix)
Estimate a rigid rotation transformation between a source and a target point cloud using an iterative...
Definition: gicp.hpp:373
typename PointCloudSource::Ptr PointCloudSourcePtr
Definition: gicp.h:101
void setNumberOfThreads(unsigned int nr_threads=0)
Initialize the scheduler and set the number of threads to use.
Definition: gicp.hpp:50
void computeRDerivative(const Vector6d &x, const Eigen::Matrix3d &dCost_dR_T, Vector6d &g) const
Computes the derivative of the cost function w.r.t rotation angles.
Definition: gicp.hpp:205
typename Eigen::AngleAxis< Scalar > AngleAxis
Definition: gicp.h:132
void computeTransformation(PointCloudSource &output, const Matrix4 &guess) override
Rigid transformation computation method with initial guess.
Definition: gicp.hpp:770
typename Eigen::Matrix< Scalar, 3, 3 > Matrix3
Definition: gicp.h:128
Eigen::Matrix< double, 6, 1 > Vector6d
Definition: gicp.h:127
An exception that is thrown when the number of correspondents is not equal to the minimum required.
Definition: exceptions.h:63
A base class for all pcl exceptions which inherits from std::runtime_error.
Definition: exceptions.h:67
std::size_t size() const
Definition: point_cloud.h:443
shared_ptr< const PointCloud< PointT > > ConstPtr
Definition: point_cloud.h:414
bool initComputeReciprocal()
Internal computation when reciprocal lookup is needed.
An exception that is thrown when the non linear solver didn't converge.
Definition: exceptions.h:49
int nearestKSearch(const PointT &point, int k, Indices &k_indices, std::vector< float > &k_sqr_distances) const override
Search for the k-nearest neighbors for the given query point.
Definition: kdtree.hpp:88
shared_ptr< KdTree< PointT, Tree > > Ptr
Definition: kdtree.h:75
void transformPointCloud(const pcl::PointCloud< PointT > &cloud_in, pcl::PointCloud< PointT > &cloud_out, const Eigen::Matrix< Scalar, 4, 4 > &transform, bool copy_all_fields)
Apply a rigid transform defined by a 4x4 matrix.
Definition: transforms.hpp:221
Status
Definition: bfgs.h:70
@ NoProgress
Definition: bfgs.h:75
@ Running
Definition: bfgs.h:73
@ Success
Definition: bfgs.h:74
@ NegativeGradientEpsilon
Definition: bfgs.h:71
const Eigen::Map< const Eigen::Vector4f, Eigen::Aligned > Vector4fMapConst
IndicesAllocator<> Indices
Type used for indices in PCL.
Definition: types.h:133
Scalar sigma
Definition: bfgs.h:147
Scalar tau2
Definition: bfgs.h:149
Scalar rho
Definition: bfgs.h:146
Scalar tau1
Definition: bfgs.h:148
Scalar tau3
Definition: bfgs.h:150
Index order
Definition: bfgs.h:152
void dfddf(const Vector6d &x, Vector6d &df, Matrix6d &ddf)
Definition: gicp.hpp:601
void df(const Vector6d &x, Vector6d &df) override
Definition: gicp.hpp:514
BFGSSpace::Status checkGradient(const Vector6d &g) override
Definition: gicp.hpp:747
void fdf(const Vector6d &x, double &f, Vector6d &df) override
Definition: gicp.hpp:557
A point structure representing Euclidean xyz coordinates, and the RGB color.