Point Cloud Library (PCL)  1.14.1-dev
point_cloud.h
1 /*
2  * Software License Agreement (BSD License)
3  *
4  * Point Cloud Library (PCL) - www.pointclouds.org
5  * Copyright (c) 2010-2012, Willow Garage, Inc.
6  * Copyright (c) 2012-, Open Perception, Inc.
7  *
8  * All rights reserved.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  *
14  * * Redistributions of source code must retain the above copyright
15  * notice, this list of conditions and the following disclaimer.
16  * * Redistributions in binary form must reproduce the above
17  * copyright notice, this list of conditions and the following
18  * disclaimer in the documentation and/or other materials provided
19  * with the distribution.
20  * * Neither the name of the copyright holder(s) nor the names of its
21  * contributors may be used to endorse or promote products derived
22  * from this software without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
25  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
26  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
27  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
28  * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
29  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
30  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
31  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
32  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
34  * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35  * POSSIBILITY OF SUCH DAMAGE.
36  *
37  */
38 
39 #pragma once
40 
41 #ifdef __GNUC__
42 #pragma GCC system_header
43 #endif
44 
45 #include <Eigen/StdVector>
46 #include <Eigen/Geometry>
47 #include <pcl/PCLHeader.h>
48 #include <pcl/exceptions.h>
49 #include <pcl/memory.h>
50 #include <pcl/pcl_macros.h>
51 #include <pcl/type_traits.h>
52 #include <pcl/types.h>
53 #include <pcl/console/print.h> // for PCL_WARN
54 
55 #include <utility>
56 #include <vector>
57 
58 namespace pcl
59 {
60  namespace detail
61  {
62  struct FieldMapping
63  {
64  std::size_t serialized_offset;
65  std::size_t struct_offset;
66  std::size_t size;
67  };
68  } // namespace detail
69 
70  // Forward declarations
71  template <typename PointT> class PointCloud;
72  using MsgFieldMap = std::vector<detail::FieldMapping>;
73 
74  /** \brief Helper functor structure for copying data between an Eigen type and a PointT. */
75  template <typename PointOutT>
77  {
78  using Pod = typename traits::POD<PointOutT>::type;
79 
80  /** \brief Constructor
81  * \param[in] p1 the input Eigen type
82  * \param[out] p2 the output Point type
83  */
84  NdCopyEigenPointFunctor (const Eigen::VectorXf &p1, PointOutT &p2)
85  : p1_ (p1),
86  p2_ (reinterpret_cast<Pod&>(p2)),
87  f_idx_ (0) { }
88 
89  /** \brief Operator. Data copy happens here. */
90  template<typename Key> inline void
92  {
93  //boost::fusion::at_key<Key> (p2_) = p1_[f_idx_++];
94  using T = typename pcl::traits::datatype<PointOutT, Key>::type;
95  std::uint8_t* data_ptr = reinterpret_cast<std::uint8_t*>(&p2_) + pcl::traits::offset<PointOutT, Key>::value;
96  *reinterpret_cast<T*>(data_ptr) = static_cast<T> (p1_[f_idx_++]);
97  }
98 
99  private:
100  const Eigen::VectorXf &p1_;
101  Pod &p2_;
102  int f_idx_;
103  public:
105  };
106 
107  /** \brief Helper functor structure for copying data between an Eigen type and a PointT. */
108  template <typename PointInT>
110  {
111  using Pod = typename traits::POD<PointInT>::type;
112 
113  /** \brief Constructor
114  * \param[in] p1 the input Point type
115  * \param[out] p2 the output Eigen type
116  */
117  NdCopyPointEigenFunctor (const PointInT &p1, Eigen::VectorXf &p2)
118  : p1_ (reinterpret_cast<const Pod&>(p1)), p2_ (p2), f_idx_ (0) { }
119 
120  /** \brief Operator. Data copy happens here. */
121  template<typename Key> inline void
123  {
124  //p2_[f_idx_++] = boost::fusion::at_key<Key> (p1_);
125  using T = typename pcl::traits::datatype<PointInT, Key>::type;
126  const std::uint8_t* data_ptr = reinterpret_cast<const std::uint8_t*>(&p1_) + pcl::traits::offset<PointInT, Key>::value;
127  p2_[f_idx_++] = static_cast<float> (*reinterpret_cast<const T*>(data_ptr));
128  }
129 
130  private:
131  const Pod &p1_;
132  Eigen::VectorXf &p2_;
133  int f_idx_;
134  public:
136  };
137 
138  /** \brief PointCloud represents the base class in PCL for storing collections of 3D points.
139  *
140  * The class is templated, which means you need to specify the type of data
141  * that it should contain. For example, to create a point cloud that holds 4
142  * random XYZ data points, use:
143  *
144  * \code
145  * pcl::PointCloud<pcl::PointXYZ> cloud;
146  * cloud.push_back (pcl::PointXYZ (rand (), rand (), rand ()));
147  * cloud.push_back (pcl::PointXYZ (rand (), rand (), rand ()));
148  * cloud.push_back (pcl::PointXYZ (rand (), rand (), rand ()));
149  * cloud.push_back (pcl::PointXYZ (rand (), rand (), rand ()));
150  * \endcode
151  *
152  * The PointCloud class contains the following elements:
153  * - \b width - specifies the width of the point cloud dataset in the number of points. WIDTH has two meanings:
154  * - it can specify the total number of points in the cloud (equal with POINTS see below) for unorganized datasets;
155  * - it can specify the width (total number of points in a row) of an organized point cloud dataset.
156  * \a Mandatory.
157  * - \b height - specifies the height of the point cloud dataset in the number of points. HEIGHT has two meanings:
158  * - it can specify the height (total number of rows) of an organized point cloud dataset;
159  * - it is set to 1 for unorganized datasets (thus used to check whether a dataset is organized or not).
160  * \a Mandatory.
161  * - \b points - the data array where all points of type <b>PointT</b> are stored. \a Mandatory.
162  *
163  * - \b is_dense - specifies if all the data in <b>points</b> is finite (true), or whether it might contain Inf/NaN values
164  * (false). \a Mandatory.
165  *
166  * - \b sensor_origin_ - specifies the sensor acquisition pose (origin/translation). \a Optional.
167  * - \b sensor_orientation_ - specifies the sensor acquisition pose (rotation). \a Optional.
168  *
169  * \author Patrick Mihelich, Radu B. Rusu
170  */
171  template <typename PointT>
173  {
174  public:
175  /** \brief Default constructor. Sets \ref is_dense to true, \ref width
176  * and \ref height to 0, and the \ref sensor_origin_ and \ref
177  * sensor_orientation_ to identity.
178  */
179  PointCloud () = default;
180 
181  /** \brief Copy constructor from point cloud subset
182  * \param[in] pc the cloud to copy into this
183  * \param[in] indices the subset to copy
184  */
186  const Indices &indices) :
187  header (pc.header), points (indices.size ()), width (indices.size ()), height (1), is_dense (pc.is_dense),
189  {
190  // Copy the obvious
191  assert (indices.size () <= pc.size ());
192  for (std::size_t i = 0; i < indices.size (); i++)
193  points[i] = pc[indices[i]];
194  }
195 
196  /** \brief Allocate constructor from point cloud subset
197  * \param[in] width_ the cloud width
198  * \param[in] height_ the cloud height
199  * \param[in] value_ default value
200  */
201  PointCloud (std::uint32_t width_, std::uint32_t height_, const PointT& value_ = PointT ())
202  : points (width_ * height_, value_)
203  , width (width_)
204  , height (height_)
205  {}
206 
207  //TODO: check if copy/move constructors/assignment operators are needed
208 
209  /** \brief Add a point cloud to the current cloud.
210  * \param[in] rhs the cloud to add to the current cloud
211  * \return the new cloud as a concatenation of the current cloud and the new given cloud
212  */
213  inline PointCloud&
215  {
216  concatenate((*this), rhs);
217  return (*this);
218  }
219 
220  /** \brief Add a point cloud to another cloud.
221  * \param[in] rhs the cloud to add to the current cloud
222  * \return the new cloud as a concatenation of the current cloud and the new given cloud
223  */
224  inline PointCloud
226  {
227  return (PointCloud (*this) += rhs);
228  }
229 
230  inline static bool
232  const pcl::PointCloud<PointT> &cloud2)
233  {
234  // Make the resultant point cloud take the newest stamp
235  cloud1.header.stamp = std::max (cloud1.header.stamp, cloud2.header.stamp);
236 
237  // libstdc++ (GCC) on calling reserve allocates new memory, copies and deallocates old vector
238  // This causes a drastic performance hit. Prefer not to use reserve with libstdc++ (default on clang)
239  cloud1.insert (cloud1.end (), cloud2.begin (), cloud2.end ());
240 
241  cloud1.width = cloud1.size ();
242  cloud1.height = 1;
243  cloud1.is_dense = cloud1.is_dense && cloud2.is_dense;
244  return true;
245  }
246 
247  inline static bool
249  const pcl::PointCloud<PointT> &cloud2,
250  pcl::PointCloud<PointT> &cloud_out)
251  {
252  cloud_out = cloud1;
253  return concatenate(cloud_out, cloud2);
254  }
255 
256  /** \brief Obtain the point given by the (column, row) coordinates. Only works on organized
257  * datasets (those that have height != 1).
258  * \param[in] column the column coordinate
259  * \param[in] row the row coordinate
260  */
261  inline const PointT&
262  at (int column, int row) const
263  {
264  if (this->height > 1)
265  return (points.at (row * this->width + column));
266  else
267  throw UnorganizedPointCloudException ("Can't use 2D indexing with an unorganized point cloud");
268  }
269 
270  /** \brief Obtain the point given by the (column, row) coordinates. Only works on organized
271  * datasets (those that have height != 1).
272  * \param[in] column the column coordinate
273  * \param[in] row the row coordinate
274  */
275  inline PointT&
276  at (int column, int row)
277  {
278  if (this->height > 1)
279  return (points.at (row * this->width + column));
280  else
281  throw UnorganizedPointCloudException ("Can't use 2D indexing with an unorganized point cloud");
282  }
283 
284  /** \brief Obtain the point given by the (column, row) coordinates. Only works on organized
285  * datasets (those that have height != 1).
286  * \param[in] column the column coordinate
287  * \param[in] row the row coordinate
288  */
289  inline const PointT&
290  operator () (std::size_t column, std::size_t row) const
291  {
292  return (points[row * this->width + column]);
293  }
294 
295  /** \brief Obtain the point given by the (column, row) coordinates. Only works on organized
296  * datasets (those that have height != 1).
297  * \param[in] column the column coordinate
298  * \param[in] row the row coordinate
299  */
300  inline PointT&
301  operator () (std::size_t column, std::size_t row)
302  {
303  return (points[row * this->width + column]);
304  }
305 
306  /** \brief Return whether a dataset is organized (e.g., arranged in a structured grid).
307  * \note The height value must be different than 1 for a dataset to be organized.
308  */
309  inline bool
310  isOrganized () const
311  {
312  return (height > 1);
313  }
314 
315  /** \brief Return an Eigen MatrixXf (assumes float values) mapped to the specified dimensions of the PointCloud.
316  * \note This method is for advanced users only! Use with care!
317  *
318  * \attention Compile time flags used for Eigen might affect the dimension of the Eigen::Map returned. If Eigen
319  * is using row major storage, the matrix shape would be (number of Points X elements in a Point) else
320  * the matrix shape would be (elements in a Point X number of Points). Essentially,
321  * * Major direction: number of points in cloud
322  * * Minor direction: number of point dimensions
323  * By default, as of Eigen 3.3, Eigen uses Column major storage
324  *
325  * \param[in] dim the number of dimensions to consider for each point
326  * \param[in] stride the number of values in each point (will be the number of values that separate two of the columns)
327  * \param[in] offset the number of dimensions to skip from the beginning of each point
328  * (stride = offset + dim + x, where x is the number of dimensions to skip from the end of each point)
329  * \note for getting only XYZ coordinates out of PointXYZ use dim=3, stride=4 and offset=0 due to the alignment.
330  * \attention PointT types are most of the time aligned, so the offsets are not continuous!
331  */
332  inline Eigen::Map<Eigen::MatrixXf, Eigen::Aligned, Eigen::OuterStride<> >
333  getMatrixXfMap (int dim, int stride, int offset)
334  {
335  if (Eigen::MatrixXf::Flags & Eigen::RowMajorBit)
336  return (Eigen::Map<Eigen::MatrixXf, Eigen::Aligned, Eigen::OuterStride<> >(reinterpret_cast<float*>(&points[0])+offset, size (), dim, Eigen::OuterStride<> (stride)));
337  else
338  return (Eigen::Map<Eigen::MatrixXf, Eigen::Aligned, Eigen::OuterStride<> >(reinterpret_cast<float*>(&points[0])+offset, dim, size (), Eigen::OuterStride<> (stride)));
339  }
340 
341  /** \brief Return an Eigen MatrixXf (assumes float values) mapped to the specified dimensions of the PointCloud.
342  * \note This method is for advanced users only! Use with care!
343  *
344  * \attention Compile time flags used for Eigen might affect the dimension of the Eigen::Map returned. If Eigen
345  * is using row major storage, the matrix shape would be (number of Points X elements in a Point) else
346  * the matrix shape would be (elements in a Point X number of Points). Essentially,
347  * * Major direction: number of points in cloud
348  * * Minor direction: number of point dimensions
349  * By default, as of Eigen 3.3, Eigen uses Column major storage
350  *
351  * \param[in] dim the number of dimensions to consider for each point
352  * \param[in] stride the number of values in each point (will be the number of values that separate two of the columns)
353  * \param[in] offset the number of dimensions to skip from the beginning of each point
354  * (stride = offset + dim + x, where x is the number of dimensions to skip from the end of each point)
355  * \note for getting only XYZ coordinates out of PointXYZ use dim=3, stride=4 and offset=0 due to the alignment.
356  * \attention PointT types are most of the time aligned, so the offsets are not continuous!
357  */
358  inline const Eigen::Map<const Eigen::MatrixXf, Eigen::Aligned, Eigen::OuterStride<> >
359  getMatrixXfMap (int dim, int stride, int offset) const
360  {
361  if (Eigen::MatrixXf::Flags & Eigen::RowMajorBit)
362  return (Eigen::Map<const Eigen::MatrixXf, Eigen::Aligned, Eigen::OuterStride<> >(reinterpret_cast<float*>(const_cast<PointT*>(&points[0]))+offset, size (), dim, Eigen::OuterStride<> (stride)));
363  else
364  return (Eigen::Map<const Eigen::MatrixXf, Eigen::Aligned, Eigen::OuterStride<> >(reinterpret_cast<float*>(const_cast<PointT*>(&points[0]))+offset, dim, size (), Eigen::OuterStride<> (stride)));
365  }
366 
367  /**
368  * \brief Return an Eigen MatrixXf (assumes float values) mapped to the PointCloud.
369  * \note This method is for advanced users only! Use with care!
370  * \attention PointT types are most of the time aligned, so the offsets are not continuous!
371  * \overload Eigen::Map<Eigen::MatrixXf, Eigen::Aligned, Eigen::OuterStride<> > pcl::PointCloud::getMatrixXfMap ()
372  */
373  inline Eigen::Map<Eigen::MatrixXf, Eigen::Aligned, Eigen::OuterStride<> >
375  {
376  return (getMatrixXfMap (sizeof (PointT) / sizeof (float), sizeof (PointT) / sizeof (float), 0));
377  }
378 
379  /**
380  * \brief Return an Eigen MatrixXf (assumes float values) mapped to the PointCloud.
381  * \note This method is for advanced users only! Use with care!
382  * \attention PointT types are most of the time aligned, so the offsets are not continuous!
383  * \overload const Eigen::Map<Eigen::MatrixXf, Eigen::Aligned, Eigen::OuterStride<> > pcl::PointCloud::getMatrixXfMap () const
384  */
385  inline const Eigen::Map<const Eigen::MatrixXf, Eigen::Aligned, Eigen::OuterStride<> >
386  getMatrixXfMap () const
387  {
388  return (getMatrixXfMap (sizeof (PointT) / sizeof (float), sizeof (PointT) / sizeof (float), 0));
389  }
390 
391  /** \brief The point cloud header. It contains information about the acquisition time. */
393 
394  /** \brief The point data. */
395  std::vector<PointT, Eigen::aligned_allocator<PointT> > points;
396 
397  /** \brief The point cloud width (if organized as an image-structure). */
398  std::uint32_t width = 0;
399  /** \brief The point cloud height (if organized as an image-structure). */
400  std::uint32_t height = 0;
401 
402  /** \brief True if no points are invalid (e.g., have NaN or Inf values in any of their floating point fields). */
403  bool is_dense = true;
404 
405  /** \brief Sensor acquisition pose (origin/translation). */
406  Eigen::Vector4f sensor_origin_ = Eigen::Vector4f::Zero ();
407  /** \brief Sensor acquisition pose (rotation). */
408  Eigen::Quaternionf sensor_orientation_ = Eigen::Quaternionf::Identity ();
409 
410  using PointType = PointT; // Make the template class available from the outside
411  using VectorType = std::vector<PointT, Eigen::aligned_allocator<PointT> >;
412  using CloudVectorType = std::vector<PointCloud<PointT>, Eigen::aligned_allocator<PointCloud<PointT> > >;
413  using Ptr = shared_ptr<PointCloud<PointT> >;
414  using ConstPtr = shared_ptr<const PointCloud<PointT> >;
415 
416  // std container compatibility typedefs according to
417  // http://en.cppreference.com/w/cpp/concept/Container
419  using reference = PointT&;
420  using const_reference = const PointT&;
421  using difference_type = typename VectorType::difference_type;
422  using size_type = typename VectorType::size_type;
423 
424  // iterators
425  using iterator = typename VectorType::iterator;
426  using const_iterator = typename VectorType::const_iterator;
427  using reverse_iterator = typename VectorType::reverse_iterator;
428  using const_reverse_iterator = typename VectorType::const_reverse_iterator;
429  inline iterator begin () noexcept { return (points.begin ()); }
430  inline iterator end () noexcept { return (points.end ()); }
431  inline const_iterator begin () const noexcept { return (points.begin ()); }
432  inline const_iterator end () const noexcept { return (points.end ()); }
433  inline const_iterator cbegin () const noexcept { return (points.cbegin ()); }
434  inline const_iterator cend () const noexcept { return (points.cend ()); }
435  inline reverse_iterator rbegin () noexcept { return (points.rbegin ()); }
436  inline reverse_iterator rend () noexcept { return (points.rend ()); }
437  inline const_reverse_iterator rbegin () const noexcept { return (points.rbegin ()); }
438  inline const_reverse_iterator rend () const noexcept { return (points.rend ()); }
439  inline const_reverse_iterator crbegin () const noexcept { return (points.crbegin ()); }
440  inline const_reverse_iterator crend () const noexcept { return (points.crend ()); }
441 
442  //capacity
443  inline std::size_t size () const { return points.size (); }
444  inline index_t max_size() const noexcept { return static_cast<index_t>(points.max_size()); }
445  inline void reserve (std::size_t n) { points.reserve (n); }
446  inline bool empty () const { return points.empty (); }
447  inline PointT* data() noexcept { return points.data(); }
448  inline const PointT* data() const noexcept { return points.data(); }
449 
450  /**
451  * \brief Resizes the container to contain `count` elements
452  * \details
453  * * If the current size is greater than `count`, the pointcloud is reduced to its
454  * first `count` elements
455  * * If the current size is less than `count`, additional default-inserted points
456  * are appended
457  * \note This potentially breaks the organized structure of the cloud by setting
458  * the height to 1 IFF `width * height != count`!
459  * \param[in] count new size of the point cloud
460  */
461  inline void
462  resize(std::size_t count)
463  {
464  points.resize(count);
465  if (width * height != count) {
466  width = static_cast<std::uint32_t>(count);
467  height = 1;
468  }
469  }
470 
471  /**
472  * \brief Resizes the container to contain `new_width * new_height` elements
473  * \details
474  * * If the current size is greater than the requested size, the pointcloud
475  * is reduced to its first requested elements
476  * * If the current size is less then the requested size, additional
477  * default-inserted points are appended
478  * \param[in] new_width new width of the point cloud
479  * \param[in] new_height new height of the point cloud
480  */
481  inline void
482  resize(uindex_t new_width, uindex_t new_height)
483  {
484  points.resize(new_width * new_height);
485  width = new_width;
486  height = new_height;
487  }
488 
489  /**
490  * \brief Resizes the container to contain count elements
491  * \details
492  * * If the current size is greater than `count`, the pointcloud is reduced to its
493  * first `count` elements
494  * * If the current size is less than `count`, additional copies of `value` are
495  * appended
496  * \note This potentially breaks the organized structure of the cloud by setting
497  * the height to 1 IFF `width * height != count`!
498  * \param[in] count new size of the point cloud
499  * \param[in] value the value to initialize the new points with
500  */
501  inline void
502  resize(index_t count, const PointT& value)
503  {
504  points.resize(count, value);
505  if (width * height != count) {
506  width = count;
507  height = 1;
508  }
509  }
510 
511  /**
512  * \brief Resizes the container to contain count elements
513  * \details
514  * * If the current size is greater then the requested size, the pointcloud
515  * is reduced to its first requested elements
516  * * If the current size is less then the requested size, additional
517  * default-inserted points are appended
518  * \param[in] new_width new width of the point cloud
519  * \param[in] new_height new height of the point cloud
520  * \param[in] value the value to initialize the new points with
521  */
522  inline void
523  resize(index_t new_width, index_t new_height, const PointT& value)
524  {
525  points.resize(new_width * new_height, value);
526  width = new_width;
527  height = new_height;
528  }
529 
530  //element access
531  inline const PointT& operator[] (std::size_t n) const { return (points[n]); }
532  inline PointT& operator[] (std::size_t n) { return (points[n]); }
533  inline const PointT& at (std::size_t n) const { return (points.at (n)); }
534  inline PointT& at (std::size_t n) { return (points.at (n)); }
535  inline const PointT& front () const { return (points.front ()); }
536  inline PointT& front () { return (points.front ()); }
537  inline const PointT& back () const { return (points.back ()); }
538  inline PointT& back () { return (points.back ()); }
539 
540  /**
541  * \brief Replaces the points with `count` copies of `value`
542  * \note This breaks the organized structure of the cloud by setting the height to
543  * 1!
544  * \param[in] count new size of the point cloud
545  * \param[in] value value each point of the cloud should have
546  */
547  inline void
548  assign(index_t count, const PointT& value)
549  {
550  points.assign(count, value);
551  width = static_cast<std::uint32_t>(size());
552  height = 1;
553  }
554 
555  /**
556  * \brief Replaces the points with `new_width * new_height` copies of `value`
557  * \param[in] new_width new width of the point cloud
558  * \param[in] new_height new height of the point cloud
559  * \param[in] value value each point of the cloud should have
560  */
561  inline void
562  assign(index_t new_width, index_t new_height, const PointT& value)
563  {
564  points.assign(new_width * new_height, value);
565  width = new_width;
566  height = new_height;
567  }
568 
569  /**
570  * \brief Replaces the points with copies of those in the range `[first, last)`
571  * \details The behavior is undefined if either argument is an iterator into
572  * `*this`
573  * \note This breaks the organized structure of the cloud by setting the height to
574  * 1!
575  */
576  template <class InputIterator>
577  inline void
578  assign(InputIterator first, InputIterator last)
579  {
580  points.assign(std::move(first), std::move(last));
581  width = static_cast<std::uint32_t>(size());
582  height = 1;
583  }
584 
585  /**
586  * \brief Replaces the points with copies of those in the range `[first, last)`
587  * \details The behavior is undefined if either argument is an iterator into
588  * `*this`
589  * \note This calculates the height based on size and width provided. This means
590  * the assignment happens even if the size is not perfectly divisible by width
591  * \param[in] first, last the range from which the points are copied
592  * \param[in] new_width new width of the point cloud
593  */
594  template <class InputIterator>
595  inline void
596  assign(InputIterator first, InputIterator last, index_t new_width)
597  {
598  if (new_width == 0) {
599  PCL_WARN("Assignment with new_width equal to 0,"
600  "setting width to size of the cloud and height to 1\n");
601  return assign(std::move(first), std::move(last));
602  }
603 
604  points.assign(std::move(first), std::move(last));
605  width = new_width;
606  height = size() / width;
607  if (width * height != size()) {
608  PCL_WARN("Mismatch in assignment. Requested width (%zu) doesn't divide "
609  "provided size (%zu) cleanly. Setting height to 1\n",
610  static_cast<std::size_t>(width),
611  static_cast<std::size_t>(size()));
612  width = size();
613  height = 1;
614  }
615  }
616 
617  /**
618  * \brief Replaces the points with the elements from the initializer list `ilist`
619  * \note This breaks the organized structure of the cloud by setting the height to
620  * 1!
621  */
622  void
623  inline assign(std::initializer_list<PointT> ilist)
624  {
625  points.assign(std::move(ilist));
626  width = static_cast<std::uint32_t>(size());
627  height = 1;
628  }
629 
630  /**
631  * \brief Replaces the points with the elements from the initializer list `ilist`
632  * \note This calculates the height based on size and width provided. This means
633  * the assignment happens even if the size is not perfectly divisible by width
634  * \param[in] ilist initializer list from which the points are copied
635  * \param[in] new_width new width of the point cloud
636  */
637  void
638  inline assign(std::initializer_list<PointT> ilist, index_t new_width)
639  {
640  if (new_width == 0) {
641  PCL_WARN("Assignment with new_width equal to 0,"
642  "setting width to size of the cloud and height to 1\n");
643  return assign(std::move(ilist));
644  }
645  points.assign(std::move(ilist));
646  width = new_width;
647  height = size() / width;
648  if (width * height != size()) {
649  PCL_WARN("Mismatch in assignment. Requested width (%zu) doesn't divide "
650  "provided size (%zu) cleanly. Setting height to 1\n",
651  static_cast<std::size_t>(width),
652  static_cast<std::size_t>(size()));
653  width = size();
654  height = 1;
655  }
656  }
657 
658  /** \brief Insert a new point in the cloud, at the end of the container.
659  * \note This breaks the organized structure of the cloud by setting the height to 1!
660  * \param[in] pt the point to insert
661  */
662  inline void
663  push_back (const PointT& pt)
664  {
665  points.push_back (pt);
666  width = size ();
667  height = 1;
668  }
669 
670  /** \brief Insert a new point in the cloud, at the end of the container.
671  * \note This assumes the user would correct the width and height later on!
672  * \param[in] pt the point to insert
673  */
674  inline void
676  {
677  points.push_back (pt);
678  }
679 
680  /** \brief Emplace a new point in the cloud, at the end of the container.
681  * \note This breaks the organized structure of the cloud by setting the height to 1!
682  * \param[in] args the parameters to forward to the point to construct
683  * \return reference to the emplaced point
684  */
685  template <class... Args> inline reference
686  emplace_back (Args&& ...args)
687  {
688  points.emplace_back (std::forward<Args> (args)...);
689  width = size ();
690  height = 1;
691  return points.back();
692  }
693 
694  /** \brief Emplace a new point in the cloud, at the end of the container.
695  * \note This assumes the user would correct the width and height later on!
696  * \param[in] args the parameters to forward to the point to construct
697  * \return reference to the emplaced point
698  */
699  template <class... Args> inline reference
700  transient_emplace_back (Args&& ...args)
701  {
702  points.emplace_back (std::forward<Args> (args)...);
703  return points.back();
704  }
705 
706  /** \brief Insert a new point in the cloud, given an iterator.
707  * \note This breaks the organized structure of the cloud by setting the height to 1!
708  * \param[in] position where to insert the point
709  * \param[in] pt the point to insert
710  * \return returns the new position iterator
711  */
712  inline iterator
713  insert (iterator position, const PointT& pt)
714  {
715  iterator it = points.insert (std::move(position), pt);
716  width = size ();
717  height = 1;
718  return (it);
719  }
720 
721  /** \brief Insert a new point in the cloud, given an iterator.
722  * \note This assumes the user would correct the width and height later on!
723  * \param[in] position where to insert the point
724  * \param[in] pt the point to insert
725  * \return returns the new position iterator
726  */
727  inline iterator
728  transient_insert (iterator position, const PointT& pt)
729  {
730  iterator it = points.insert (std::move(position), pt);
731  return (it);
732  }
733 
734  /** \brief Insert a new point in the cloud N times, given an iterator.
735  * \note This breaks the organized structure of the cloud by setting the height to 1!
736  * \param[in] position where to insert the point
737  * \param[in] n the number of times to insert the point
738  * \param[in] pt the point to insert
739  */
740  inline void
741  insert (iterator position, std::size_t n, const PointT& pt)
742  {
743  points.insert (std::move(position), n, pt);
744  width = size ();
745  height = 1;
746  }
747 
748  /** \brief Insert a new point in the cloud N times, given an iterator.
749  * \note This assumes the user would correct the width and height later on!
750  * \param[in] position where to insert the point
751  * \param[in] n the number of times to insert the point
752  * \param[in] pt the point to insert
753  */
754  inline void
755  transient_insert (iterator position, std::size_t n, const PointT& pt)
756  {
757  points.insert (std::move(position), n, pt);
758  }
759 
760  /** \brief Insert a new range of points in the cloud, at a certain position.
761  * \note This breaks the organized structure of the cloud by setting the height to 1!
762  * \param[in] position where to insert the data
763  * \param[in] first where to start inserting the points from
764  * \param[in] last where to stop inserting the points from
765  */
766  template <class InputIterator> inline void
767  insert (iterator position, InputIterator first, InputIterator last)
768  {
769  points.insert (std::move(position), std::move(first), std::move(last));
770  width = size ();
771  height = 1;
772  }
773 
774  /** \brief Insert a new range of points in the cloud, at a certain position.
775  * \note This assumes the user would correct the width and height later on!
776  * \param[in] position where to insert the data
777  * \param[in] first where to start inserting the points from
778  * \param[in] last where to stop inserting the points from
779  */
780  template <class InputIterator> inline void
781  transient_insert (iterator position, InputIterator first, InputIterator last)
782  {
783  points.insert (std::move(position), std::move(first), std::move(last));
784  }
785 
786  /** \brief Emplace a new point in the cloud, given an iterator.
787  * \note This breaks the organized structure of the cloud by setting the height to 1!
788  * \param[in] position iterator before which the point will be emplaced
789  * \param[in] args the parameters to forward to the point to construct
790  * \return returns the new position iterator
791  */
792  template <class... Args> inline iterator
793  emplace (iterator position, Args&& ...args)
794  {
795  iterator it = points.emplace (std::move(position), std::forward<Args> (args)...);
796  width = size ();
797  height = 1;
798  return (it);
799  }
800 
801  /** \brief Emplace a new point in the cloud, given an iterator.
802  * \note This assumes the user would correct the width and height later on!
803  * \param[in] position iterator before which the point will be emplaced
804  * \param[in] args the parameters to forward to the point to construct
805  * \return returns the new position iterator
806  */
807  template <class... Args> inline iterator
808  transient_emplace (iterator position, Args&& ...args)
809  {
810  iterator it = points.emplace (std::move(position), std::forward<Args> (args)...);
811  return (it);
812  }
813 
814  /** \brief Erase a point in the cloud.
815  * \note This breaks the organized structure of the cloud by setting the height to 1!
816  * \param[in] position what data point to erase
817  * \return returns the new position iterator
818  */
819  inline iterator
820  erase (iterator position)
821  {
822  iterator it = points.erase (std::move(position));
823  width = size ();
824  height = 1;
825  return (it);
826  }
827 
828  /** \brief Erase a point in the cloud.
829  * \note This assumes the user would correct the width and height later on!
830  * \param[in] position what data point to erase
831  * \return returns the new position iterator
832  */
833  inline iterator
835  {
836  iterator it = points.erase (std::move(position));
837  return (it);
838  }
839 
840  /** \brief Erase a set of points given by a (first, last) iterator pair
841  * \note This breaks the organized structure of the cloud by setting the height to 1!
842  * \param[in] first where to start erasing points from
843  * \param[in] last where to stop erasing points from
844  * \return returns the new position iterator
845  */
846  inline iterator
847  erase (iterator first, iterator last)
848  {
849  iterator it = points.erase (std::move(first), std::move(last));
850  width = size ();
851  height = 1;
852  return (it);
853  }
854 
855  /** \brief Erase a set of points given by a (first, last) iterator pair
856  * \note This assumes the user would correct the width and height later on!
857  * \param[in] first where to start erasing points from
858  * \param[in] last where to stop erasing points from
859  * \return returns the new position iterator
860  */
861  inline iterator
863  {
864  iterator it = points.erase (std::move(first), std::move(last));
865  return (it);
866  }
867 
868  /** \brief Swap a point cloud with another cloud.
869  * \param[in,out] rhs point cloud to swap this with
870  */
871  inline void
873  {
874  std::swap (header, rhs.header);
875  this->points.swap (rhs.points);
876  std::swap (width, rhs.width);
877  std::swap (height, rhs.height);
878  std::swap (is_dense, rhs.is_dense);
879  std::swap (sensor_origin_, rhs.sensor_origin_);
880  std::swap (sensor_orientation_, rhs.sensor_orientation_);
881  }
882 
883  /** \brief Removes all points in a cloud and sets the width and height to 0. */
884  inline void
885  clear ()
886  {
887  points.clear ();
888  width = 0;
889  height = 0;
890  }
891 
892  /** \brief Copy the cloud to the heap and return a smart pointer
893  * Note that deep copy is performed, so avoid using this function on non-empty clouds.
894  * The changes of the returned cloud are not mirrored back to this one.
895  * \return shared pointer to the copy of the cloud
896  */
897  inline Ptr
898  makeShared () const { return Ptr (new PointCloud<PointT> (*this)); }
899 
901  };
902 
903 
904  template <typename PointT> std::ostream&
905  operator << (std::ostream& s, const pcl::PointCloud<PointT> &p)
906  {
907  s << "header: " << p.header << std::endl;
908  s << "points[]: " << p.size () << std::endl;
909  s << "width: " << p.width << std::endl;
910  s << "height: " << p.height << std::endl;
911  s << "is_dense: " << p.is_dense << std::endl;
912  s << "sensor origin (xyz): [" <<
913  p.sensor_origin_.x () << ", " <<
914  p.sensor_origin_.y () << ", " <<
915  p.sensor_origin_.z () << "] / orientation (xyzw): [" <<
916  p.sensor_orientation_.x () << ", " <<
917  p.sensor_orientation_.y () << ", " <<
918  p.sensor_orientation_.z () << ", " <<
919  p.sensor_orientation_.w () << "]" <<
920  std::endl;
921  return (s);
922  }
923 }
PointCloud represents the base class in PCL for storing collections of 3D points.
Definition: point_cloud.h:173
typename VectorType::size_type size_type
Definition: point_cloud.h:422
PointT * data() noexcept
Definition: point_cloud.h:447
iterator erase(iterator position)
Erase a point in the cloud.
Definition: point_cloud.h:820
const_reverse_iterator rend() const noexcept
Definition: point_cloud.h:438
void resize(uindex_t new_width, uindex_t new_height)
Resizes the container to contain new_width * new_height elements.
Definition: point_cloud.h:482
const_iterator cbegin() const noexcept
Definition: point_cloud.h:433
void push_back(const PointT &pt)
Insert a new point in the cloud, at the end of the container.
Definition: point_cloud.h:663
reference transient_emplace_back(Args &&...args)
Emplace a new point in the cloud, at the end of the container.
Definition: point_cloud.h:700
const Eigen::Map< const Eigen::MatrixXf, Eigen::Aligned, Eigen::OuterStride<> > getMatrixXfMap(int dim, int stride, int offset) const
Return an Eigen MatrixXf (assumes float values) mapped to the specified dimensions of the PointCloud.
Definition: point_cloud.h:359
const PointT & at(int column, int row) const
Obtain the point given by the (column, row) coordinates.
Definition: point_cloud.h:262
PointT & front()
Definition: point_cloud.h:536
bool empty() const
Definition: point_cloud.h:446
reverse_iterator rbegin() noexcept
Definition: point_cloud.h:435
const_iterator begin() const noexcept
Definition: point_cloud.h:431
const_iterator cend() const noexcept
Definition: point_cloud.h:434
PointT & back()
Definition: point_cloud.h:538
const PointT & operator[](std::size_t n) const
Definition: point_cloud.h:531
void insert(iterator position, std::size_t n, const PointT &pt)
Insert a new point in the cloud N times, given an iterator.
Definition: point_cloud.h:741
void transient_insert(iterator position, std::size_t n, const PointT &pt)
Insert a new point in the cloud N times, given an iterator.
Definition: point_cloud.h:755
iterator erase(iterator first, iterator last)
Erase a set of points given by a (first, last) iterator pair.
Definition: point_cloud.h:847
const_reverse_iterator crend() const noexcept
Definition: point_cloud.h:440
PointCloud & operator+=(const PointCloud &rhs)
Add a point cloud to the current cloud.
Definition: point_cloud.h:214
Eigen::Map< Eigen::MatrixXf, Eigen::Aligned, Eigen::OuterStride<> > getMatrixXfMap()
Definition: point_cloud.h:374
PointCloud(std::uint32_t width_, std::uint32_t height_, const PointT &value_=PointT())
Allocate constructor from point cloud subset.
Definition: point_cloud.h:201
void resize(index_t count, const PointT &value)
Resizes the container to contain count elements.
Definition: point_cloud.h:502
PointT & at(std::size_t n)
Definition: point_cloud.h:534
const_reverse_iterator crbegin() const noexcept
Definition: point_cloud.h:439
bool is_dense
True if no points are invalid (e.g., have NaN or Inf values in any of their floating point fields).
Definition: point_cloud.h:403
void insert(iterator position, InputIterator first, InputIterator last)
Insert a new range of points in the cloud, at a certain position.
Definition: point_cloud.h:767
iterator transient_erase(iterator first, iterator last)
Erase a set of points given by a (first, last) iterator pair.
Definition: point_cloud.h:862
PointCloud operator+(const PointCloud &rhs)
Add a point cloud to another cloud.
Definition: point_cloud.h:225
typename VectorType::reverse_iterator reverse_iterator
Definition: point_cloud.h:427
const PointT & at(std::size_t n) const
Definition: point_cloud.h:533
const PointT & front() const
Definition: point_cloud.h:535
iterator transient_erase(iterator position)
Erase a point in the cloud.
Definition: point_cloud.h:834
void resize(std::size_t count)
Resizes the container to contain count elements.
Definition: point_cloud.h:462
void assign(InputIterator first, InputIterator last, index_t new_width)
Replaces the points with copies of those in the range [first, last)
Definition: point_cloud.h:596
typename VectorType::iterator iterator
Definition: point_cloud.h:425
Eigen::Quaternionf sensor_orientation_
Sensor acquisition pose (rotation).
Definition: point_cloud.h:408
void transient_push_back(const PointT &pt)
Insert a new point in the cloud, at the end of the container.
Definition: point_cloud.h:675
const PointT & back() const
Definition: point_cloud.h:537
std::uint32_t width
The point cloud width (if organized as an image-structure).
Definition: point_cloud.h:398
PointT & reference
Definition: point_cloud.h:419
void assign(std::initializer_list< PointT > ilist)
Replaces the points with the elements from the initializer list ilist
Definition: point_cloud.h:623
reference emplace_back(Args &&...args)
Emplace a new point in the cloud, at the end of the container.
Definition: point_cloud.h:686
iterator insert(iterator position, const PointT &pt)
Insert a new point in the cloud, given an iterator.
Definition: point_cloud.h:713
PointCloud(const PointCloud< PointT > &pc, const Indices &indices)
Copy constructor from point cloud subset.
Definition: point_cloud.h:185
PointCloud()=default
Default constructor.
pcl::PCLHeader header
The point cloud header.
Definition: point_cloud.h:392
std::vector< PointCloud< PointT >, Eigen::aligned_allocator< PointCloud< PointT > > > CloudVectorType
Definition: point_cloud.h:412
iterator emplace(iterator position, Args &&...args)
Emplace a new point in the cloud, given an iterator.
Definition: point_cloud.h:793
static bool concatenate(const pcl::PointCloud< PointT > &cloud1, const pcl::PointCloud< PointT > &cloud2, pcl::PointCloud< PointT > &cloud_out)
Definition: point_cloud.h:248
void assign(InputIterator first, InputIterator last)
Replaces the points with copies of those in the range [first, last)
Definition: point_cloud.h:578
typename VectorType::const_iterator const_iterator
Definition: point_cloud.h:426
iterator end() noexcept
Definition: point_cloud.h:430
bool isOrganized() const
Return whether a dataset is organized (e.g., arranged in a structured grid).
Definition: point_cloud.h:310
std::uint32_t height
The point cloud height (if organized as an image-structure).
Definition: point_cloud.h:400
PointT & at(int column, int row)
Obtain the point given by the (column, row) coordinates.
Definition: point_cloud.h:276
void clear()
Removes all points in a cloud and sets the width and height to 0.
Definition: point_cloud.h:885
void resize(index_t new_width, index_t new_height, const PointT &value)
Resizes the container to contain count elements.
Definition: point_cloud.h:523
void transient_insert(iterator position, InputIterator first, InputIterator last)
Insert a new range of points in the cloud, at a certain position.
Definition: point_cloud.h:781
typename VectorType::const_reverse_iterator const_reverse_iterator
Definition: point_cloud.h:428
std::size_t size() const
Definition: point_cloud.h:443
void assign(std::initializer_list< PointT > ilist, index_t new_width)
Replaces the points with the elements from the initializer list ilist
Definition: point_cloud.h:638
Eigen::Vector4f sensor_origin_
Sensor acquisition pose (origin/translation).
Definition: point_cloud.h:406
void reserve(std::size_t n)
Definition: point_cloud.h:445
const PointT & operator()(std::size_t column, std::size_t row) const
Obtain the point given by the (column, row) coordinates.
Definition: point_cloud.h:290
std::vector< PointT, Eigen::aligned_allocator< PointT > > VectorType
Definition: point_cloud.h:411
void swap(PointCloud< PointT > &rhs)
Swap a point cloud with another cloud.
Definition: point_cloud.h:872
shared_ptr< PointCloud< PointT > > Ptr
Definition: point_cloud.h:413
Eigen::Map< Eigen::MatrixXf, Eigen::Aligned, Eigen::OuterStride<> > getMatrixXfMap(int dim, int stride, int offset)
Return an Eigen MatrixXf (assumes float values) mapped to the specified dimensions of the PointCloud.
Definition: point_cloud.h:333
typename VectorType::difference_type difference_type
Definition: point_cloud.h:421
index_t max_size() const noexcept
Definition: point_cloud.h:444
const_iterator end() const noexcept
Definition: point_cloud.h:432
iterator begin() noexcept
Definition: point_cloud.h:429
void assign(index_t count, const PointT &value)
Replaces the points with count copies of value
Definition: point_cloud.h:548
const Eigen::Map< const Eigen::MatrixXf, Eigen::Aligned, Eigen::OuterStride<> > getMatrixXfMap() const
Definition: point_cloud.h:386
const_reverse_iterator rbegin() const noexcept
Definition: point_cloud.h:437
void assign(index_t new_width, index_t new_height, const PointT &value)
Replaces the points with new_width * new_height copies of value
Definition: point_cloud.h:562
iterator transient_insert(iterator position, const PointT &pt)
Insert a new point in the cloud, given an iterator.
Definition: point_cloud.h:728
iterator transient_emplace(iterator position, Args &&...args)
Emplace a new point in the cloud, given an iterator.
Definition: point_cloud.h:808
static bool concatenate(pcl::PointCloud< PointT > &cloud1, const pcl::PointCloud< PointT > &cloud2)
Definition: point_cloud.h:231
std::vector< PointT, Eigen::aligned_allocator< PointT > > points
The point data.
Definition: point_cloud.h:395
reverse_iterator rend() noexcept
Definition: point_cloud.h:436
shared_ptr< const PointCloud< PointT > > ConstPtr
Definition: point_cloud.h:414
const PointT * data() const noexcept
Definition: point_cloud.h:448
Ptr makeShared() const
Copy the cloud to the heap and return a smart pointer Note that deep copy is performed,...
Definition: point_cloud.h:898
An exception that is thrown when an organized point cloud is needed but not provided.
Definition: exceptions.h:211
#define PCL_MAKE_ALIGNED_OPERATOR_NEW
Macro to signal a class requires a custom allocator.
Definition: memory.h:63
Defines functions, macros and traits for allocating and using memory.
detail::int_type_t< detail::index_type_size, false > uindex_t
Type used for an unsigned index in PCL.
Definition: types.h:120
detail::int_type_t< detail::index_type_size, detail::index_type_signed > index_t
Type used for an index in PCL.
Definition: types.h:112
std::ostream & operator<<(std::ostream &os, const BivariatePolynomialT< real > &p)
IndicesAllocator<> Indices
Type used for indices in PCL.
Definition: types.h:133
std::vector< detail::FieldMapping > MsgFieldMap
Definition: point_cloud.h:72
Defines all the PCL and non-PCL macros used.
Helper functor structure for copying data between an Eigen type and a PointT.
Definition: point_cloud.h:77
NdCopyEigenPointFunctor(const Eigen::VectorXf &p1, PointOutT &p2)
Constructor.
Definition: point_cloud.h:84
typename traits::POD< PointOutT >::type Pod
Definition: point_cloud.h:78
void operator()()
Operator.
Definition: point_cloud.h:91
Helper functor structure for copying data between an Eigen type and a PointT.
Definition: point_cloud.h:110
typename traits::POD< PointInT >::type Pod
Definition: point_cloud.h:111
void operator()()
Operator.
Definition: point_cloud.h:122
NdCopyPointEigenFunctor(const PointInT &p1, Eigen::VectorXf &p2)
Constructor.
Definition: point_cloud.h:117
std::uint64_t stamp
A timestamp associated with the time when the data was acquired.
Definition: PCLHeader.h:18
A point structure representing Euclidean xyz coordinates, and the RGB color.
std::size_t serialized_offset
Definition: point_cloud.h:64
Defines basic non-point types used by PCL.