47 #include <boost/random/mersenne_twister.hpp>
48 #include <boost/random/uniform_int.hpp>
49 #include <boost/random/variate_generator.hpp>
53 #include <pcl/console/print.h>
54 #include <pcl/point_cloud.h>
56 #include <pcl/sample_consensus/model_types.h>
58 #include <pcl/search/search.h>
62 template<
class T>
class ProgressiveSampleConsensus;
69 template <
typename Po
intT>
78 using Ptr = shared_ptr<SampleConsensusModel<PointT> >;
79 using ConstPtr = shared_ptr<const SampleConsensusModel<PointT> >;
87 ,
radius_min_ (-std::numeric_limits<double>::max ())
91 ,
rng_dist_ (new
boost::uniform_int<> (0, std::numeric_limits<int>::max ()))
96 rng_alg_.seed (std::random_device()());
110 ,
radius_min_ (-std::numeric_limits<double>::max ())
111 ,
radius_max_ (std::numeric_limits<double>::max ())
114 ,
rng_dist_ (new
boost::uniform_int<> (0, std::numeric_limits<int>::max ()))
118 rng_alg_.seed (std::random_device()());
139 ,
radius_min_ (-std::numeric_limits<double>::max ())
140 ,
radius_max_ (std::numeric_limits<double>::max ())
143 ,
rng_dist_ (new
boost::uniform_int<> (0, std::numeric_limits<int>::max ()))
147 rng_alg_.seed (std::random_device()());
153 PCL_ERROR(
"[pcl::SampleConsensusModel] Invalid index vector given with size "
154 "%zu while the input PointCloud has size %zu!\n",
156 static_cast<std::size_t
>(
input_->size()));
179 PCL_ERROR (
"[pcl::SampleConsensusModel::getSamples] Can not select %lu unique points out of %lu!\n",
180 samples.size (),
indices_->size ());
183 iterations = std::numeric_limits<int>::max() - 1;
200 PCL_DEBUG (
"[pcl::SampleConsensusModel::getSamples] Selected %lu samples.\n", samples.size ());
204 PCL_DEBUG (
"[pcl::SampleConsensusModel::getSamples] WARNING: Could not select %d sample points in %d iterations!\n",
getSampleSize (),
max_sample_checks_);
218 Eigen::VectorXf &model_coefficients)
const = 0;
232 const Eigen::VectorXf &model_coefficients,
233 Eigen::VectorXf &optimized_coefficients)
const = 0;
242 std::vector<double> &distances)
const = 0;
254 const double threshold,
268 const double threshold)
const = 0;
280 const Eigen::VectorXf &model_coefficients,
282 bool copy_data_fields =
true)
const = 0;
294 const Eigen::VectorXf &model_coefficients,
295 const double threshold)
const = 0;
310 for (std::size_t i = 0; i < cloud->size (); ++i)
317 inline PointCloudConstPtr
349 inline const std::string&
404 PCL_ERROR (
"[pcl::SampleConsensusModel::setModelConstraints] The given function is empty (i.e. does not contain a callable target)!\n");
439 std::vector<double> dists (error_sqr_dists);
440 const std::size_t medIdx = dists.size () >> 1;
441 std::nth_element (dists.begin (), dists.begin () + medIdx, dists.end ());
442 double median_error_sqr = dists[medIdx];
443 return (2.1981 * median_error_sqr);
455 PCL_ERROR (
"[pcl::SampleConsensusModel::computeVariance] The variance of the Sample Consensus model distances cannot be estimated, as the model has not been computed yet. Please compute the model first or at least run selectWithinDistance before continuing. Returning NAN!\n");
456 return (std::numeric_limits<double>::quiet_NaN ());
469 std::size_t sample_size = sample.size ();
471 for (std::size_t i = 0; i < sample_size; ++i)
486 std::size_t sample_size = sample.size ();
493 std::vector<float> sqr_dists;
503 if (indices.size () < sample_size - 1)
506 for(std::size_t i = 1; i < sample_size; ++i)
511 for (std::size_t i = 0; i < sample_size-1; ++i)
512 std::swap (indices[i], indices[i + (
rnd () % (indices.size () - i))]);
513 for (std::size_t i = 1; i < sample_size; ++i)
532 PCL_ERROR (
"[pcl::%s::isModelValid] Invalid number of model coefficients given (is %lu, should be %lu)!\n",
getClassName ().c_str (), model_coefficients.size (),
model_size_);
537 PCL_DEBUG (
"[pcl::%s::isModelValid] The user defined isModelValid function returned false.\n",
getClassName ().c_str ());
583 std::shared_ptr<boost::variate_generator< boost::mt19937&, boost::uniform_int<> > >
rng_gen_;
611 template <
typename Po
intT,
typename Po
intNT>
618 using Ptr = shared_ptr<SampleConsensusModelFromNormals<PointT, PointNT> >;
619 using ConstPtr = shared_ptr<const SampleConsensusModelFromNormals<PointT, PointNT> >;
635 if (w < 0.0 || w > 1.0)
637 PCL_ERROR (
"[pcl::SampleConsensusModel::setNormalDistanceWeight] w is %g, but should be in [0; 1]. Weight will not be set.", w);
678 template<
typename _Scalar,
int NX=Eigen::Dynamic,
int NY=Eigen::Dynamic>
688 using ValueType = Eigen::Matrix<Scalar,ValuesAtCompileTime,1>;
689 using InputType = Eigen::Matrix<Scalar,InputsAtCompileTime,1>;
690 using JacobianType = Eigen::Matrix<Scalar,ValuesAtCompileTime,InputsAtCompileTime>;
698 Functor (
int m_data_points) : m_data_points_ (m_data_points) {}
704 values ()
const {
return (m_data_points_); }
707 const int m_data_points_;
PointCloud represents the base class in PCL for storing collections of 3D points.
shared_ptr< PointCloud< PointT > > Ptr
shared_ptr< const PointCloud< PointT > > ConstPtr
ProgressiveSampleConsensus represents an implementation of the PROSAC (PROgressive SAmple Consensus) ...
SampleConsensusModelFromNormals represents the base model class for models that require the use of su...
void setNormalDistanceWeight(const double w)
Set the normal angular distance weight.
PointCloudNConstPtr normals_
A pointer to the input dataset that contains the point normals of the XYZ dataset.
typename pcl::PointCloud< PointNT >::ConstPtr PointCloudNConstPtr
void setInputNormals(const PointCloudNConstPtr &normals)
Provide a pointer to the input dataset that contains the point normals of the XYZ dataset.
double getNormalDistanceWeight() const
Get the normal angular distance weight.
SampleConsensusModelFromNormals()
Empty constructor for base SampleConsensusModelFromNormals.
virtual ~SampleConsensusModelFromNormals()=default
Destructor.
shared_ptr< const SampleConsensusModelFromNormals< PointT, PointNT > > ConstPtr
typename pcl::PointCloud< PointNT >::Ptr PointCloudNPtr
double normal_distance_weight_
The relative weight (between 0 and 1) to give to the angular distance (0 to pi/2) between point norma...
PointCloudNConstPtr getInputNormals() const
Get a pointer to the normals of the input XYZ point cloud dataset.
shared_ptr< SampleConsensusModelFromNormals< PointT, PointNT > > Ptr
SampleConsensusModel represents the base model class.
SampleConsensusModel(const PointCloudConstPtr &cloud, const Indices &indices, bool random=false)
Constructor for base SampleConsensusModel.
virtual void getSamples(int &iterations, Indices &samples)
Get a set of random data samples and return them as point indices.
static const unsigned int max_sample_checks_
The maximum number of samples to try until we get a good one.
virtual bool isSampleGood(const Indices &samples) const =0
Check if a sample of indices results in a good sample of points indices.
virtual bool computeModelCoefficients(const Indices &samples, Eigen::VectorXf &model_coefficients) const =0
Check whether the given index samples can form a valid model, compute the model coefficients from the...
virtual SacModel getModelType() const =0
Return a unique id for each type of model employed.
void drawIndexSampleRadius(Indices &sample)
Fills a sample array with one random sample from the indices_ vector and other random samples that ar...
unsigned int getModelSize() const
Return the number of coefficients in the model.
double radius_min_
The minimum and maximum radius limits for the model.
std::function< bool(const Eigen::VectorXf &)> custom_model_constraints_
A user defined function that takes model coefficients and returns whether the model is acceptable or ...
void setRadiusLimits(const double &min_radius, const double &max_radius)
Set the minimum and maximum allowable radius limits for the model (applicable to models that estimate...
void getSamplesMaxDist(double &radius) const
Get maximum distance allowed when drawing random samples.
PointCloudConstPtr getInputCloud() const
Get a pointer to the input point cloud dataset.
virtual void optimizeModelCoefficients(const Indices &inliers, const Eigen::VectorXf &model_coefficients, Eigen::VectorXf &optimized_coefficients) const =0
Recompute the model coefficients using the given inlier set and return them to the user.
shared_ptr< SampleConsensusModel< PointT > > Ptr
const std::string & getClassName() const
Get a string representation of the name of this class.
SearchPtr samples_radius_search_
The search object for picking subsequent samples using radius search.
virtual std::size_t countWithinDistance(const Eigen::VectorXf &model_coefficients, const double threshold) const =0
Count all the points which respect the given model coefficients as inliers.
double computeVariance(const std::vector< double > &error_sqr_dists) const
Compute the variance of the errors to the model.
unsigned int sample_size_
The size of a sample from which the model is computed.
typename PointCloud::ConstPtr PointCloudConstPtr
IndicesPtr getIndices() const
Get a pointer to the vector of indices used.
std::shared_ptr< boost::variate_generator< boost::mt19937 &, boost::uniform_int<> > > rng_gen_
Boost-based random number generator.
IndicesPtr indices_
A pointer to the vector of point indices to use.
double computeVariance() const
Compute the variance of the errors to the model from the internally estimated vector of distances.
virtual void projectPoints(const Indices &inliers, const Eigen::VectorXf &model_coefficients, PointCloud &projected_points, bool copy_data_fields=true) const =0
Create a new point cloud with inliers projected onto the model.
void setModelConstraints(std::function< bool(const Eigen::VectorXf &)> function)
This can be used to impose any kind of constraint on the model, e.g.
Indices shuffled_indices_
Data containing a shuffled version of the indices.
boost::mt19937 rng_alg_
Boost-based random number generator algorithm.
PointCloudConstPtr input_
A boost shared pointer to the point cloud data array.
virtual bool isModelValid(const Eigen::VectorXf &model_coefficients) const
Check whether a model is valid given the user constraints.
void setIndices(const IndicesPtr &indices)
Provide a pointer to the vector of indices that represents the input data.
virtual bool doSamplesVerifyModel(const std::set< index_t > &indices, const Eigen::VectorXf &model_coefficients, const double threshold) const =0
Verify whether a subset of indices verifies a given set of model coefficients.
SampleConsensusModel(bool random=false)
Empty constructor for base SampleConsensusModel.
virtual ~SampleConsensusModel()=default
Destructor for base SampleConsensusModel.
std::shared_ptr< boost::uniform_int<> > rng_dist_
Boost-based random number generator distribution.
void setIndices(const Indices &indices)
Provide the vector of indices that represents the input data.
SampleConsensusModel(const PointCloudConstPtr &cloud, bool random=false)
Constructor for base SampleConsensusModel.
double samples_radius_
The maximum distance of subsequent samples from the first (radius search)
virtual void setInputCloud(const PointCloudConstPtr &cloud)
Provide a pointer to the input dataset.
std::string model_name_
The model name.
unsigned int model_size_
The number of coefficients in the model.
int rnd()
Boost-based random number generator.
void getRadiusLimits(double &min_radius, double &max_radius) const
Get the minimum and maximum allowable radius limits for the model as set by the user.
typename pcl::search::Search< PointT >::Ptr SearchPtr
void drawIndexSample(Indices &sample)
Fills a sample array with random samples from the indices_ vector.
typename PointCloud::Ptr PointCloudPtr
shared_ptr< const SampleConsensusModel< PointT > > ConstPtr
std::vector< double > error_sqr_dists_
A vector holding the distances to the computed model.
void setSamplesMaxDist(const double &radius, SearchPtr search)
Set the maximum distance allowed when drawing random samples.
virtual void getDistancesToModel(const Eigen::VectorXf &model_coefficients, std::vector< double > &distances) const =0
Compute all distances from the cloud data to a given model.
virtual void selectWithinDistance(const Eigen::VectorXf &model_coefficients, const double threshold, Indices &inliers)=0
Select all the points which respect the given model coefficients as inliers.
unsigned int getSampleSize() const
Return the size of a sample from which the model is computed.
shared_ptr< pcl::search::Search< PointT > > Ptr
#define PCL_MAKE_ALIGNED_OPERATOR_NEW
Macro to signal a class requires a custom allocator.
Defines functions, macros and traits for allocating and using memory.
detail::int_type_t< detail::index_type_size, detail::index_type_signed > index_t
Type used for an index in PCL.
IndicesAllocator<> Indices
Type used for indices in PCL.
shared_ptr< Indices > IndicesPtr
Base functor all the models that need non linear optimization must define their own one and implement...
virtual ~Functor()=default
int values() const
Get the number of values.
Functor()
Empty Constructor.
Eigen::Matrix< Scalar, InputsAtCompileTime, 1 > InputType
Eigen::Matrix< Scalar, ValuesAtCompileTime, 1 > ValueType
Eigen::Matrix< Scalar, ValuesAtCompileTime, InputsAtCompileTime > JacobianType
Functor(int m_data_points)
Constructor.
A point structure representing Euclidean xyz coordinates, and the RGB color.
Defines basic non-point types used by PCL.