38 #ifndef PCL_SURFACE_IMPL_TEXTURE_MAPPING_HPP_
39 #define PCL_SURFACE_IMPL_TEXTURE_MAPPING_HPP_
42 #include <pcl/surface/texture_mapping.h>
43 #include <unordered_set>
46 template<
typename Po
intInT> std::vector<Eigen::Vector2f, Eigen::aligned_allocator<Eigen::Vector2f> >
48 const Eigen::Vector3f &p1,
49 const Eigen::Vector3f &p2,
50 const Eigen::Vector3f &p3)
52 std::vector<Eigen::Vector2f, Eigen::aligned_allocator<Eigen::Vector2f> > tex_coordinates;
54 Eigen::Vector3f p1p2 (p2[0] - p1[0], p2[1] - p1[1], p2[2] - p1[2]);
55 Eigen::Vector3f p1p3 (p3[0] - p1[0], p3[1] - p1[1], p3[2] - p1[2]);
56 Eigen::Vector3f p2p3 (p3[0] - p2[0], p3[1] - p2[1], p3[2] - p2[2]);
59 p1p2 /= std::sqrt (p1p2.dot (p1p2));
60 p1p3 /= std::sqrt (p1p3.dot (p1p3));
61 p2p3 /= std::sqrt (p2p3.dot (p2p3));
64 Eigen::Vector3f f_normal = p1p2.cross (p1p3);
65 f_normal /= std::sqrt (f_normal.dot (f_normal));
68 Eigen::Vector3f f_vector_field = vector_field_ - vector_field_.dot (f_normal) * f_normal;
71 f_vector_field /= std::sqrt (f_vector_field.dot (f_vector_field));
74 Eigen::Vector2f tp1, tp2, tp3;
76 double alpha = std::acos (f_vector_field.dot (p1p2));
79 double e1 = (p2 - p3).norm () / f_;
80 double e2 = (p1 - p3).norm () / f_;
81 double e3 = (p1 - p2).norm () / f_;
87 tp2[0] =
static_cast<float> (e3);
91 double cos_p1 = (e2 * e2 + e3 * e3 - e1 * e1) / (2 * e2 * e3);
92 double sin_p1 = sqrt (1 - (cos_p1 * cos_p1));
94 tp3[0] =
static_cast<float> (cos_p1 * e2);
95 tp3[1] =
static_cast<float> (sin_p1 * e2);
98 Eigen::Vector2f r_tp2, r_tp3;
99 r_tp2[0] =
static_cast<float> (tp2[0] * std::cos (alpha) - tp2[1] * std::sin (alpha));
100 r_tp2[1] =
static_cast<float> (tp2[0] * std::sin (alpha) + tp2[1] * std::cos (alpha));
102 r_tp3[0] =
static_cast<float> (tp3[0] * std::cos (alpha) - tp3[1] * std::sin (alpha));
103 r_tp3[1] =
static_cast<float> (tp3[0] * std::sin (alpha) + tp3[1] * std::cos (alpha));
113 float min_x = tp1[0];
114 float min_y = tp1[1];
137 tex_coordinates.push_back (tp1);
138 tex_coordinates.push_back (tp2);
139 tex_coordinates.push_back (tp3);
140 return (tex_coordinates);
144 template<
typename Po
intInT>
void
149 int point_size =
static_cast<int> (tex_mesh.
cloud.
data.size ()) / nr_points;
154 Eigen::Vector3f facet[3];
157 std::vector<std::vector<Eigen::Vector2f, Eigen::aligned_allocator<Eigen::Vector2f> > >texture_map;
159 for (std::size_t m = 0; m < tex_mesh.
tex_polygons.size (); ++m)
162 std::vector<Eigen::Vector2f, Eigen::aligned_allocator<Eigen::Vector2f> > texture_map_tmp;
165 for (std::size_t i = 0; i < tex_mesh.
tex_polygons[m].size (); ++i)
168 for (std::size_t j = 0; j < tex_mesh.
tex_polygons[m][i].vertices.size (); ++j)
170 std::size_t idx = tex_mesh.
tex_polygons[m][i].vertices[j];
171 memcpy (&x, &tex_mesh.
cloud.
data[idx * point_size + tex_mesh.
cloud.
fields[0].offset],
sizeof(
float));
172 memcpy (&y, &tex_mesh.
cloud.
data[idx * point_size + tex_mesh.
cloud.
fields[1].offset],
sizeof(
float));
173 memcpy (&z, &tex_mesh.
cloud.
data[idx * point_size + tex_mesh.
cloud.
fields[2].offset],
sizeof(
float));
180 std::vector<Eigen::Vector2f, Eigen::aligned_allocator<Eigen::Vector2f> > tex_coordinates = mapTexture2Face (facet[0], facet[1], facet[2]);
181 for (
const auto &tex_coordinate : tex_coordinates)
182 texture_map_tmp.push_back (tex_coordinate);
186 tex_material_.tex_name =
"material_" + std::to_string(m);
187 tex_material_.tex_file = tex_files_[m];
196 template<
typename Po
intInT>
void
201 int point_size =
static_cast<int> (tex_mesh.
cloud.
data.size ()) / nr_points;
203 float x_lowest = 100000;
205 float y_lowest = 100000;
207 float z_lowest = 100000;
211 for (
int i = 0; i < nr_points; ++i)
213 memcpy (&x_, &tex_mesh.
cloud.
data[i * point_size + tex_mesh.
cloud.
fields[0].offset],
sizeof(
float));
214 memcpy (&y_, &tex_mesh.
cloud.
data[i * point_size + tex_mesh.
cloud.
fields[1].offset],
sizeof(
float));
215 memcpy (&z_, &tex_mesh.
cloud.
data[i * point_size + tex_mesh.
cloud.
fields[2].offset],
sizeof(
float));
234 float x_range = (x_lowest - x_highest) * -1;
235 float x_offset = 0 - x_lowest;
240 float z_range = (z_lowest - z_highest) * -1;
241 float z_offset = 0 - z_lowest;
244 std::vector<std::vector<Eigen::Vector2f, Eigen::aligned_allocator<Eigen::Vector2f> > >texture_map;
246 for (std::size_t m = 0; m < tex_mesh.
tex_polygons.size (); ++m)
249 std::vector<Eigen::Vector2f, Eigen::aligned_allocator<Eigen::Vector2f> > texture_map_tmp;
252 for (std::size_t i = 0; i < tex_mesh.
tex_polygons[m].size (); ++i)
254 Eigen::Vector2f tmp_VT;
255 for (std::size_t j = 0; j < tex_mesh.
tex_polygons[m][i].vertices.size (); ++j)
257 std::size_t idx = tex_mesh.
tex_polygons[m][i].vertices[j];
258 memcpy (&x_, &tex_mesh.
cloud.
data[idx * point_size + tex_mesh.
cloud.
fields[0].offset],
sizeof(
float));
259 memcpy (&y_, &tex_mesh.
cloud.
data[idx * point_size + tex_mesh.
cloud.
fields[1].offset],
sizeof(
float));
260 memcpy (&z_, &tex_mesh.
cloud.
data[idx * point_size + tex_mesh.
cloud.
fields[2].offset],
sizeof(
float));
263 tmp_VT[0] = (x_ + x_offset) / x_range;
264 tmp_VT[1] = (z_ + z_offset) / z_range;
265 texture_map_tmp.push_back (tmp_VT);
270 tex_material_.tex_name =
"material_" + std::to_string(m);
271 tex_material_.tex_file = tex_files_[m];
280 template<
typename Po
intInT>
void
286 PCL_ERROR (
"The mesh should be divided into nbCamera+1 sub-meshes.\n");
287 PCL_ERROR (
"You provided %d cameras and a mesh containing %d sub-meshes.\n", cams.size (), tex_mesh.
tex_polygons.size ());
291 PCL_INFO (
"You provided %d cameras and a mesh containing %d sub-meshes.\n", cams.size (), tex_mesh.
tex_polygons.size ());
299 for (std::size_t m = 0; m < cams.size (); ++m)
302 Camera current_cam = cams[m];
305 Eigen::Affine3f cam_trans = current_cam.
pose;
311 std::vector<Eigen::Vector2f, Eigen::aligned_allocator<Eigen::Vector2f> > texture_map_tmp;
314 for (
const auto &tex_polygon : tex_mesh.
tex_polygons[m])
316 Eigen::Vector2f tmp_VT;
318 for (
const auto &vertex : tex_polygon.vertices)
321 PointInT pt = (*camera_transformed_cloud)[vertex];
324 getPointUVCoordinates (pt, current_cam, tmp_VT);
325 texture_map_tmp.push_back (tmp_VT);
330 tex_material_.tex_name =
"material_" + std::to_string(m);
339 std::vector<Eigen::Vector2f, Eigen::aligned_allocator<Eigen::Vector2f> > texture_map_tmp;
340 for (
const auto &tex_polygon : tex_mesh.
tex_polygons[cams.size ()])
341 for (std::size_t j = 0; j < tex_polygon.vertices.size (); ++j)
343 Eigen::Vector2f tmp_VT;
346 texture_map_tmp.push_back (tmp_VT);
352 tex_material_.tex_name =
"material_" + std::to_string(cams.size());
353 tex_material_.tex_file =
"occluded.jpg";
358 template<
typename Po
intInT>
bool
361 Eigen::Vector3f direction;
362 direction (0) = pt.x;
363 direction (1) = pt.y;
364 direction (2) = pt.z;
369 cloud = octree->getInputCloud();
371 double distance_threshold = octree->getResolution();
374 octree->getIntersectedVoxelIndices(direction, -direction, indices);
376 int nbocc =
static_cast<int> (indices.size ());
377 for (
const auto &index : indices)
380 if (pt.z * (*cloud)[index].z < 0)
386 if (std::fabs ((*cloud)[index].z - pt.z) <= distance_threshold)
397 template<
typename Po
intInT>
void
400 const double octree_voxel_size,
pcl::Indices &visible_indices,
404 double maxDeltaZ = octree_voxel_size;
407 Octree octree (octree_voxel_size);
415 visible_indices.clear ();
418 Eigen::Vector3f direction;
420 for (std::size_t i = 0; i < input_cloud->size (); ++i)
422 direction (0) = (*input_cloud)[i].x;
423 direction (1) = (*input_cloud)[i].y;
424 direction (2) = (*input_cloud)[i].z;
429 int nbocc =
static_cast<int> (indices.size ());
430 for (
const auto &index : indices)
433 if ((*input_cloud)[i].z * (*input_cloud)[index].z < 0)
439 if (std::fabs ((*input_cloud)[index].z - (*input_cloud)[i].z) <= maxDeltaZ)
449 filtered_cloud->points.push_back ((*input_cloud)[i]);
450 visible_indices.push_back (
static_cast<pcl::index_t> (i));
454 occluded_indices.push_back (
static_cast<pcl::index_t> (i));
461 template<
typename Po
intInT>
void
465 cleaned_mesh = tex_mesh;
474 removeOccludedPoints (cloud, filtered_cloud, octree_voxel_size, visible, occluded);
478 for (std::size_t polygons = 0; polygons < cleaned_mesh.
tex_polygons.size (); ++polygons)
483 for (std::size_t faces = 0; faces < tex_mesh.
tex_polygons[polygons].size (); ++faces)
486 bool faceIsVisible =
true;
489 for (
const auto &vertex : tex_mesh.
tex_polygons[polygons][faces].vertices)
491 if (find (occluded.begin (), occluded.end (), vertex) == occluded.end ())
500 faceIsVisible =
false;
514 template<
typename Po
intInT>
void
516 const double octree_voxel_size)
524 removeOccludedPoints (cloud, filtered_cloud, octree_voxel_size, visible, occluded);
529 template<
typename Po
intInT>
int
536 PCL_ERROR (
"The mesh must contain only 1 sub-mesh!\n");
540 if (cameras.empty ())
542 PCL_ERROR (
"Must provide at least one camera info!\n");
547 sorted_mesh = tex_mesh;
559 for (
const auto &camera : cameras)
562 Eigen::Affine3f cam_trans = camera.pose;
569 removeOccludedPoints (transformed_cloud, filtered_cloud, octree_voxel_size, visible, occluded);
570 visible_pts = *filtered_cloud;
573 std::unordered_set<index_t> occluded_set(occluded.cbegin(), occluded.cend());
577 std::vector<pcl::Vertices> visibleFaces_currentCam;
579 for (std::size_t faces = 0; faces < tex_mesh.
tex_polygons[0].size (); ++faces)
583 const auto faceIsVisible = std::all_of(tex_mesh.
tex_polygons[0][faces].vertices.cbegin(),
585 [&](
const auto& vertex)
587 if (occluded_set.find(vertex) != occluded_set.cend()) {
591 Eigen::Vector2f dummy_UV;
592 return this->getPointUVCoordinates ((*transformed_cloud)[vertex], camera, dummy_UV);
598 visibleFaces_currentCam.push_back (tex_mesh.
tex_polygons[0][faces]);
605 sorted_mesh.
tex_polygons.push_back (visibleFaces_currentCam);
610 sorted_mesh.tex_polygons.push_back (tex_mesh.tex_polygons[0]);
615 template<
typename Po
intInT>
void
618 const double octree_voxel_size,
const bool show_nb_occlusions,
619 const int max_occlusions)
622 double maxDeltaZ = octree_voxel_size * 2.0;
625 Octree octree (octree_voxel_size);
634 Eigen::Vector3f direction;
640 std::vector<double> zDist;
641 std::vector<double> ptDist;
643 for (
const auto& point: *input_cloud)
645 direction = pt.getVector3fMap() = point.getVector3fMap();
651 nbocc =
static_cast<int> (indices.size ());
654 for (
const auto &index : indices)
657 if (pt.z * (*input_cloud)[index].z < 0)
661 else if (std::fabs ((*input_cloud)[index].z - pt.z) <= maxDeltaZ)
668 zDist.push_back (std::fabs ((*input_cloud)[index].z - pt.z));
673 if (show_nb_occlusions)
674 (nbocc <= max_occlusions) ? (pt.
intensity =
static_cast<float> (nbocc)) : (pt.
intensity =
static_cast<float> (max_occlusions));
678 colored_cloud->
points.push_back (pt);
681 if (zDist.size () >= 2)
683 std::sort (zDist.begin (), zDist.end ());
684 std::sort (ptDist.begin (), ptDist.end ());
689 template<
typename Po
intInT>
void
691 double octree_voxel_size,
bool show_nb_occlusions,
int max_occlusions)
697 showOcclusions (cloud, colored_cloud, octree_voxel_size, show_nb_occlusions, max_occlusions);
701 template<
typename Po
intInT>
void
712 std::vector<pcl::Vertices> faces;
714 for (
int current_cam = 0; current_cam < static_cast<int> (cameras.size ()); ++current_cam)
716 PCL_INFO (
"Processing camera %d of %d.\n", current_cam+1, cameras.size ());
724 std::vector<bool> visibility;
725 visibility.resize (mesh.
tex_polygons[current_cam].size ());
726 std::vector<UvIndex> indexes_uv_to_points;
731 nan_point.
x = std::numeric_limits<float>::quiet_NaN ();
732 nan_point.
y = std::numeric_limits<float>::quiet_NaN ();
738 for (
int idx_face = 0; idx_face < static_cast<int> (mesh.
tex_polygons[current_cam].size ()); ++idx_face)
745 if (isFaceProjected (cameras[current_cam],
746 (*camera_cloud)[mesh.
tex_polygons[current_cam][idx_face].vertices[0]],
747 (*camera_cloud)[mesh.
tex_polygons[current_cam][idx_face].vertices[1]],
748 (*camera_cloud)[mesh.
tex_polygons[current_cam][idx_face].vertices[2]],
756 projections->
points.push_back (uv_coord1);
757 projections->
points.push_back (uv_coord2);
758 projections->
points.push_back (uv_coord3);
766 indexes_uv_to_points.push_back (u1);
767 indexes_uv_to_points.push_back (u2);
768 indexes_uv_to_points.push_back (u3);
771 visibility[idx_face] =
true;
775 projections->
points.push_back (nan_point);
776 projections->
points.push_back (nan_point);
777 projections->
points.push_back (nan_point);
778 indexes_uv_to_points.push_back (u_null);
779 indexes_uv_to_points.push_back (u_null);
780 indexes_uv_to_points.push_back (u_null);
782 visibility[idx_face] =
false;
792 if (visibility.size () - cpt_invisible !=0)
799 std::vector<float> neighborsSquaredDistance;
803 for (
int idx_pcam = 0 ; idx_pcam <= current_cam ; ++idx_pcam)
806 for (
int idx_face = 0; idx_face < static_cast<int> (mesh.
tex_polygons[idx_pcam].size ()); ++idx_face)
809 if (idx_pcam == current_cam && !visibility[idx_face])
822 if (isFaceProjected (cameras[current_cam],
823 (*camera_cloud)[mesh.
tex_polygons[idx_pcam][idx_face].vertices[0]],
824 (*camera_cloud)[mesh.
tex_polygons[idx_pcam][idx_face].vertices[1]],
825 (*camera_cloud)[mesh.
tex_polygons[idx_pcam][idx_face].vertices[2]],
835 getTriangleCircumcscribedCircleCentroid(uv_coord1, uv_coord2, uv_coord3, center, radius);
838 if (kdtree.
radiusSearch (center, radius, idxNeighbors, neighborsSquaredDistance) > 0 )
841 for (
const auto &idxNeighbor : idxNeighbors)
843 if (std::max ((*camera_cloud)[mesh.
tex_polygons[idx_pcam][idx_face].vertices[0]].z,
844 std::max ((*camera_cloud)[mesh.
tex_polygons[idx_pcam][idx_face].vertices[1]].z,
845 (*camera_cloud)[mesh.
tex_polygons[idx_pcam][idx_face].vertices[2]].z))
846 < (*camera_cloud)[indexes_uv_to_points[idxNeighbor].idx_cloud].z)
849 if (checkPointInsideTriangle(uv_coord1, uv_coord2, uv_coord3, (*projections)[idxNeighbor]))
852 visibility[indexes_uv_to_points[idxNeighbor].idx_face] =
false;
869 std::vector<Eigen::Vector2f, Eigen::aligned_allocator<Eigen::Vector2f> > dummy_container;
874 std::vector<pcl::Vertices> occluded_faces;
875 occluded_faces.resize (visibility.size ());
876 std::vector<pcl::Vertices> visible_faces;
877 visible_faces.resize (visibility.size ());
879 int cpt_occluded_faces = 0;
880 int cpt_visible_faces = 0;
882 for (std::size_t idx_face = 0 ; idx_face < visibility.size () ; ++idx_face)
884 if (visibility[idx_face])
887 mesh.
tex_coordinates[current_cam][cpt_visible_faces * 3](0) = (*projections)[idx_face*3].x;
888 mesh.
tex_coordinates[current_cam][cpt_visible_faces * 3](1) = (*projections)[idx_face*3].y;
890 mesh.
tex_coordinates[current_cam][cpt_visible_faces * 3 + 1](0) = (*projections)[idx_face*3 + 1].x;
891 mesh.
tex_coordinates[current_cam][cpt_visible_faces * 3 + 1](1) = (*projections)[idx_face*3 + 1].y;
893 mesh.
tex_coordinates[current_cam][cpt_visible_faces * 3 + 2](0) = (*projections)[idx_face*3 + 2].x;
894 mesh.
tex_coordinates[current_cam][cpt_visible_faces * 3 + 2](1) = (*projections)[idx_face*3 + 2].y;
896 visible_faces[cpt_visible_faces] = mesh.
tex_polygons[current_cam][idx_face];
903 occluded_faces[cpt_occluded_faces] = mesh.
tex_polygons[current_cam][idx_face];
904 cpt_occluded_faces++;
909 occluded_faces.resize (cpt_occluded_faces);
912 visible_faces.resize (cpt_visible_faces);
923 std::vector<Eigen::Vector2f, Eigen::aligned_allocator<Eigen::Vector2f> > dummy_container;
928 for(std::size_t idx_face = 0 ; idx_face < mesh.
tex_polygons[cameras.size()].size() ; ++idx_face)
930 Eigen::Vector2f UV1, UV2, UV3;
931 UV1(0) = -1.0; UV1(1) = -1.0;
932 UV2(0) = -1.0; UV2(1) = -1.0;
933 UV3(0) = -1.0; UV3(1) = -1.0;
942 template<
typename Po
intInT>
inline void
947 ptB.
x = p2.
x - p1.
x; ptB.
y = p2.
y - p1.
y;
948 ptC.
x = p3.
x - p1.
x; ptC.
y = p3.
y - p1.
y;
950 double D = 2.0*(ptB.
x*ptC.
y - ptB.
y*ptC.
x);
955 circomcenter.
x = p1.
x;
956 circomcenter.
y = p1.
y;
961 double bx2 = ptB.
x * ptB.
x;
962 double by2 = ptB.
y * ptB.
y;
963 double cx2 = ptC.
x * ptC.
x;
964 double cy2 = ptC.
y * ptC.
y;
967 circomcenter.
x =
static_cast<float> (p1.
x + (ptC.
y*(bx2 + by2) - ptB.
y*(cx2 + cy2)) / D);
968 circomcenter.
y =
static_cast<float> (p1.
y + (ptB.
x*(cx2 + cy2) - ptC.
x*(bx2 + by2)) / D);
971 radius = std::sqrt( (circomcenter.
x - p1.
x)*(circomcenter.
x - p1.
x) + (circomcenter.
y - p1.
y)*(circomcenter.
y - p1.
y));
975 template<
typename Po
intInT>
inline void
979 circumcenter.
x =
static_cast<float> (p1.
x + p2.
x + p3.
x ) / 3;
980 circumcenter.
y =
static_cast<float> (p1.
y + p2.
y + p3.
y ) / 3;
981 double r1 = (circumcenter.
x - p1.
x) * (circumcenter.
x - p1.
x) + (circumcenter.
y - p1.
y) * (circumcenter.
y - p1.
y) ;
982 double r2 = (circumcenter.
x - p2.
x) * (circumcenter.
x - p2.
x) + (circumcenter.
y - p2.
y) * (circumcenter.
y - p2.
y) ;
983 double r3 = (circumcenter.
x - p3.
x) * (circumcenter.
x - p3.
x) + (circumcenter.
y - p3.
y) * (circumcenter.
y - p3.
y) ;
986 radius = std::sqrt( std::max( r1, std::max( r2, r3) )) ;
991 template<
typename Po
intInT>
inline bool
997 double sizeX = cam.
width;
998 double sizeY = cam.
height;
1009 double focal_x, focal_y;
1020 UV_coordinates.
x =
static_cast<float> ((focal_x * (pt.x / pt.z) + cx) / sizeX);
1021 UV_coordinates.
y = 1.0f -
static_cast<float> ((focal_y * (pt.y / pt.z) + cy) / sizeY);
1024 if (UV_coordinates.
x >= 0.0 && UV_coordinates.
x <= 1.0 && UV_coordinates.
y >= 0.0 && UV_coordinates.
y <= 1.0)
1029 UV_coordinates.
x = -1.0f;
1030 UV_coordinates.
y = -1.0f;
1035 template<
typename Po
intInT>
inline bool
1039 Eigen::Vector2d v0, v1, v2;
1040 v0(0) = p3.
x - p1.
x; v0(1) = p3.
y - p1.
y;
1041 v1(0) = p2.
x - p1.
x; v1(1) = p2.
y - p1.
y;
1042 v2(0) = pt.
x - p1.
x; v2(1) = pt.
y - p1.
y;
1045 double dot00 = v0.dot(v0);
1046 double dot01 = v0.dot(v1);
1047 double dot02 = v0.dot(v2);
1048 double dot11 = v1.dot(v1);
1049 double dot12 = v1.dot(v2);
1052 double invDenom = 1.0 / (dot00*dot11 - dot01*dot01);
1053 double u = (dot11*dot02 - dot01*dot12) * invDenom;
1054 double v = (dot00*dot12 - dot01*dot02) * invDenom;
1057 return ((u >= 0) && (v >= 0) && (u + v < 1));
1061 template<
typename Po
intInT>
inline bool
1064 return (getPointUVCoordinates(p1, camera, proj1)
1066 getPointUVCoordinates(p2, camera, proj2)
1068 getPointUVCoordinates(p3, camera, proj3)
1072 #define PCL_INSTANTIATE_TextureMapping(T) \
1073 template class PCL_EXPORTS pcl::TextureMapping<T>;
KdTreeFLANN is a generic type of 3D spatial locator using kD-tree structures.
int radiusSearch(const PointT &point, double radius, Indices &k_indices, std::vector< float > &k_sqr_distances, unsigned int max_nn=0) const override
Search for all the nearest neighbors of the query point in a given radius.
void setInputCloud(const PointCloudConstPtr &cloud, const IndicesConstPtr &indices=IndicesConstPtr()) override
Provide a pointer to the input dataset.
shared_ptr< PointCloud< PointT > > Ptr
std::vector< PointT, Eigen::aligned_allocator< PointT > > points
The point data.
bool getPointUVCoordinates(const PointInT &pt, const Camera &cam, Eigen::Vector2f &UV_coordinates)
computes UV coordinates of point, observed by one particular camera
void mapTexture2MeshUV(pcl::TextureMesh &tex_mesh)
Map texture to a mesh UV mapping.
void mapTexture2Mesh(pcl::TextureMesh &tex_mesh)
Map texture to a mesh synthesis algorithm.
void getTriangleCircumcscribedCircleCentroid(const pcl::PointXY &p1, const pcl::PointXY &p2, const pcl::PointXY &p3, pcl::PointXY &circumcenter, double &radius)
Returns the centroid of a triangle and the corresponding circumscribed circle's radius.
typename PointCloud::Ptr PointCloudPtr
typename Octree::Ptr OctreePtr
bool isPointOccluded(const PointInT &pt, const OctreePtr octree)
Check if a point is occluded using raycasting on octree.
bool checkPointInsideTriangle(const pcl::PointXY &p1, const pcl::PointXY &p2, const pcl::PointXY &p3, const pcl::PointXY &pt)
Returns True if a point lays within a triangle.
bool isFaceProjected(const Camera &camera, const PointInT &p1, const PointInT &p2, const PointInT &p3, pcl::PointXY &proj1, pcl::PointXY &proj2, pcl::PointXY &proj3)
Returns true if all the vertices of one face are projected on the camera's image plane.
void removeOccludedPoints(const PointCloudPtr &input_cloud, PointCloudPtr &filtered_cloud, const double octree_voxel_size, pcl::Indices &visible_indices, pcl::Indices &occluded_indices)
Remove occluded points from a point cloud.
std::vector< Eigen::Vector2f, Eigen::aligned_allocator< Eigen::Vector2f > > mapTexture2Face(const Eigen::Vector3f &p1, const Eigen::Vector3f &p2, const Eigen::Vector3f &p3)
Map texture to a face.
int sortFacesByCamera(pcl::TextureMesh &tex_mesh, pcl::TextureMesh &sorted_mesh, const pcl::texture_mapping::CameraVector &cameras, const double octree_voxel_size, PointCloud &visible_pts)
Segment faces by camera visibility.
void getTriangleCircumcenterAndSize(const pcl::PointXY &p1, const pcl::PointXY &p2, const pcl::PointXY &p3, pcl::PointXY &circumcenter, double &radius)
Returns the circumcenter of a triangle and the circle's radius.
void showOcclusions(const PointCloudPtr &input_cloud, pcl::PointCloud< pcl::PointXYZI >::Ptr &colored_cloud, const double octree_voxel_size, const bool show_nb_occlusions=true, const int max_occlusions=4)
Colors a point cloud, depending on its occlusions.
typename PointCloud::ConstPtr PointCloudConstPtr
void mapMultipleTexturesToMeshUV(pcl::TextureMesh &tex_mesh, pcl::texture_mapping::CameraVector &cams)
Map textures acquired from a set of cameras onto a mesh.
void textureMeshwithMultipleCameras(pcl::TextureMesh &mesh, const pcl::texture_mapping::CameraVector &cameras)
Segment and texture faces by camera visibility.
void defineBoundingBox()
Investigate dimensions of pointcloud data set and define corresponding bounding box for octree.
void setInputCloud(const PointCloudConstPtr &cloud_arg, const IndicesConstPtr &indices_arg=IndicesConstPtr())
Provide a pointer to the input data set.
void addPointsFromInputCloud()
Add points from input point cloud to octree.
Octree pointcloud search class
uindex_t getIntersectedVoxelIndices(Eigen::Vector3f origin, Eigen::Vector3f direction, Indices &k_indices, uindex_t max_voxel_count=0) const
Get indices of all voxels that are intersected by a ray (origin, direction).
Define standard C methods to do distance calculations.
void transformPointCloud(const pcl::PointCloud< PointT > &cloud_in, pcl::PointCloud< PointT > &cloud_out, const Eigen::Matrix< Scalar, 4, 4 > &transform, bool copy_all_fields)
Apply a rigid transform defined by a 4x4 matrix.
std::vector< Camera, Eigen::aligned_allocator< Camera > > CameraVector
detail::int_type_t< detail::index_type_size, detail::index_type_signed > index_t
Type used for an index in PCL.
void fromPCLPointCloud2(const pcl::PCLPointCloud2 &msg, pcl::PointCloud< PointT > &cloud, const MsgFieldMap &field_map, const std::uint8_t *msg_data)
Convert a PCLPointCloud2 binary data blob into a pcl::PointCloud<T> object using a field_map.
float euclideanDistance(const PointType1 &p1, const PointType2 &p2)
Calculate the euclidean distance between the two given points.
IndicesAllocator<> Indices
Type used for indices in PCL.
std::vector<::pcl::PCLPointField > fields
std::vector< std::uint8_t > data
A 2D point structure representing Euclidean xy coordinates.
std::vector< std::vector< pcl::Vertices > > tex_polygons
polygon which is mapped with specific texture defined in TexMaterial
std::vector< std::vector< Eigen::Vector2f, Eigen::aligned_allocator< Eigen::Vector2f > > > tex_coordinates
UV coordinates.
std::vector< pcl::TexMaterial > tex_materials
define texture material
pcl::PCLPointCloud2 cloud
Structure to store camera pose and focal length.
Structure that links a uv coordinate to its 3D point and face.