Point Cloud Library (PCL)  1.14.1-dev
texture_mapping.hpp
1 /*
2  * Software License Agreement (BSD License)
3  *
4  * Copyright (c) 2010, Willow Garage, Inc.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * * Redistributions of source code must retain the above copyright
12  * notice, this list of conditions and the following disclaimer.
13  * * Redistributions in binary form must reproduce the above
14  * copyright notice, this list of conditions and the following
15  * disclaimer in the documentation and/or other materials provided
16  * with the distribution.
17  * * Neither the name of Willow Garage, Inc. nor the names of its
18  * contributors may be used to endorse or promote products derived
19  * from this software without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
25  * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
29  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
31  * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
32  * POSSIBILITY OF SUCH DAMAGE.
33  *
34  * $Id$
35  *
36  */
37 
38 #ifndef PCL_SURFACE_IMPL_TEXTURE_MAPPING_HPP_
39 #define PCL_SURFACE_IMPL_TEXTURE_MAPPING_HPP_
40 
41 #include <pcl/common/distances.h>
42 #include <pcl/surface/texture_mapping.h>
43 #include <unordered_set>
44 
45 ///////////////////////////////////////////////////////////////////////////////////////////////
46 template<typename PointInT> std::vector<Eigen::Vector2f, Eigen::aligned_allocator<Eigen::Vector2f> >
48  const Eigen::Vector3f &p1,
49  const Eigen::Vector3f &p2,
50  const Eigen::Vector3f &p3)
51 {
52  std::vector<Eigen::Vector2f, Eigen::aligned_allocator<Eigen::Vector2f> > tex_coordinates;
53  // process for each face
54  Eigen::Vector3f p1p2 (p2[0] - p1[0], p2[1] - p1[1], p2[2] - p1[2]);
55  Eigen::Vector3f p1p3 (p3[0] - p1[0], p3[1] - p1[1], p3[2] - p1[2]);
56  Eigen::Vector3f p2p3 (p3[0] - p2[0], p3[1] - p2[1], p3[2] - p2[2]);
57 
58  // Normalize
59  p1p2 /= std::sqrt (p1p2.dot (p1p2));
60  p1p3 /= std::sqrt (p1p3.dot (p1p3));
61  p2p3 /= std::sqrt (p2p3.dot (p2p3));
62 
63  // compute vector normal of a face
64  Eigen::Vector3f f_normal = p1p2.cross (p1p3);
65  f_normal /= std::sqrt (f_normal.dot (f_normal));
66 
67  // project vector field onto the face: vector v1_projected = v1 - Dot(v1, n) * n;
68  Eigen::Vector3f f_vector_field = vector_field_ - vector_field_.dot (f_normal) * f_normal;
69 
70  // Normalize
71  f_vector_field /= std::sqrt (f_vector_field.dot (f_vector_field));
72 
73  // texture coordinates
74  Eigen::Vector2f tp1, tp2, tp3;
75 
76  double alpha = std::acos (f_vector_field.dot (p1p2));
77 
78  // distance between 3 vertices of triangles
79  double e1 = (p2 - p3).norm () / f_;
80  double e2 = (p1 - p3).norm () / f_;
81  double e3 = (p1 - p2).norm () / f_;
82 
83  // initialize
84  tp1[0] = 0.0;
85  tp1[1] = 0.0;
86 
87  tp2[0] = static_cast<float> (e3);
88  tp2[1] = 0.0;
89 
90  // determine texture coordinate tp3;
91  double cos_p1 = (e2 * e2 + e3 * e3 - e1 * e1) / (2 * e2 * e3);
92  double sin_p1 = sqrt (1 - (cos_p1 * cos_p1));
93 
94  tp3[0] = static_cast<float> (cos_p1 * e2);
95  tp3[1] = static_cast<float> (sin_p1 * e2);
96 
97  // rotating by alpha (angle between V and pp1 & pp2)
98  Eigen::Vector2f r_tp2, r_tp3;
99  r_tp2[0] = static_cast<float> (tp2[0] * std::cos (alpha) - tp2[1] * std::sin (alpha));
100  r_tp2[1] = static_cast<float> (tp2[0] * std::sin (alpha) + tp2[1] * std::cos (alpha));
101 
102  r_tp3[0] = static_cast<float> (tp3[0] * std::cos (alpha) - tp3[1] * std::sin (alpha));
103  r_tp3[1] = static_cast<float> (tp3[0] * std::sin (alpha) + tp3[1] * std::cos (alpha));
104 
105  // shifting
106  tp1[0] = tp1[0];
107  tp2[0] = r_tp2[0];
108  tp3[0] = r_tp3[0];
109  tp1[1] = tp1[1];
110  tp2[1] = r_tp2[1];
111  tp3[1] = r_tp3[1];
112 
113  float min_x = tp1[0];
114  float min_y = tp1[1];
115  if (min_x > tp2[0])
116  min_x = tp2[0];
117  if (min_x > tp3[0])
118  min_x = tp3[0];
119  if (min_y > tp2[1])
120  min_y = tp2[1];
121  if (min_y > tp3[1])
122  min_y = tp3[1];
123 
124  if (min_x < 0)
125  {
126  tp1[0] -= min_x;
127  tp2[0] -= min_x;
128  tp3[0] -= min_x;
129  }
130  if (min_y < 0)
131  {
132  tp1[1] -= min_y;
133  tp2[1] -= min_y;
134  tp3[1] -= min_y;
135  }
136 
137  tex_coordinates.push_back (tp1);
138  tex_coordinates.push_back (tp2);
139  tex_coordinates.push_back (tp3);
140  return (tex_coordinates);
141 }
142 
143 ///////////////////////////////////////////////////////////////////////////////////////////////
144 template<typename PointInT> void
146 {
147  // mesh information
148  int nr_points = tex_mesh.cloud.width * tex_mesh.cloud.height;
149  int point_size = static_cast<int> (tex_mesh.cloud.data.size ()) / nr_points;
150 
151  // temporary PointXYZ
152  float x, y, z;
153  // temporary face
154  Eigen::Vector3f facet[3];
155 
156  // texture coordinates for each mesh
157  std::vector<std::vector<Eigen::Vector2f, Eigen::aligned_allocator<Eigen::Vector2f> > >texture_map;
158 
159  for (std::size_t m = 0; m < tex_mesh.tex_polygons.size (); ++m)
160  {
161  // texture coordinates for each mesh
162  std::vector<Eigen::Vector2f, Eigen::aligned_allocator<Eigen::Vector2f> > texture_map_tmp;
163 
164  // processing for each face
165  for (std::size_t i = 0; i < tex_mesh.tex_polygons[m].size (); ++i)
166  {
167  // get facet information
168  for (std::size_t j = 0; j < tex_mesh.tex_polygons[m][i].vertices.size (); ++j)
169  {
170  std::size_t idx = tex_mesh.tex_polygons[m][i].vertices[j];
171  memcpy (&x, &tex_mesh.cloud.data[idx * point_size + tex_mesh.cloud.fields[0].offset], sizeof(float));
172  memcpy (&y, &tex_mesh.cloud.data[idx * point_size + tex_mesh.cloud.fields[1].offset], sizeof(float));
173  memcpy (&z, &tex_mesh.cloud.data[idx * point_size + tex_mesh.cloud.fields[2].offset], sizeof(float));
174  facet[j][0] = x;
175  facet[j][1] = y;
176  facet[j][2] = z;
177  }
178 
179  // get texture coordinates of each face
180  std::vector<Eigen::Vector2f, Eigen::aligned_allocator<Eigen::Vector2f> > tex_coordinates = mapTexture2Face (facet[0], facet[1], facet[2]);
181  for (const auto &tex_coordinate : tex_coordinates)
182  texture_map_tmp.push_back (tex_coordinate);
183  }// end faces
184 
185  // texture materials
186  tex_material_.tex_name = "material_" + std::to_string(m);
187  tex_material_.tex_file = tex_files_[m];
188  tex_mesh.tex_materials.push_back (tex_material_);
189 
190  // texture coordinates
191  tex_mesh.tex_coordinates.push_back (texture_map_tmp);
192  }// end meshes
193 }
194 
195 ///////////////////////////////////////////////////////////////////////////////////////////////
196 template<typename PointInT> void
198 {
199  // mesh information
200  int nr_points = tex_mesh.cloud.width * tex_mesh.cloud.height;
201  int point_size = static_cast<int> (tex_mesh.cloud.data.size ()) / nr_points;
202 
203  float x_lowest = 100000;
204  float x_highest = 0;
205  float y_lowest = 100000;
206  //float y_highest = 0 ;
207  float z_lowest = 100000;
208  float z_highest = 0;
209  float x_, y_, z_;
210 
211  for (int i = 0; i < nr_points; ++i)
212  {
213  memcpy (&x_, &tex_mesh.cloud.data[i * point_size + tex_mesh.cloud.fields[0].offset], sizeof(float));
214  memcpy (&y_, &tex_mesh.cloud.data[i * point_size + tex_mesh.cloud.fields[1].offset], sizeof(float));
215  memcpy (&z_, &tex_mesh.cloud.data[i * point_size + tex_mesh.cloud.fields[2].offset], sizeof(float));
216  // x
217  if (x_ <= x_lowest)
218  x_lowest = x_;
219  if (x_ > x_lowest)
220  x_highest = x_;
221 
222  // y
223  if (y_ <= y_lowest)
224  y_lowest = y_;
225  //if (y_ > y_lowest) y_highest = y_;
226 
227  // z
228  if (z_ <= z_lowest)
229  z_lowest = z_;
230  if (z_ > z_lowest)
231  z_highest = z_;
232  }
233  // x
234  float x_range = (x_lowest - x_highest) * -1;
235  float x_offset = 0 - x_lowest;
236  // x
237  // float y_range = (y_lowest - y_highest)*-1;
238  // float y_offset = 0 - y_lowest;
239  // z
240  float z_range = (z_lowest - z_highest) * -1;
241  float z_offset = 0 - z_lowest;
242 
243  // texture coordinates for each mesh
244  std::vector<std::vector<Eigen::Vector2f, Eigen::aligned_allocator<Eigen::Vector2f> > >texture_map;
245 
246  for (std::size_t m = 0; m < tex_mesh.tex_polygons.size (); ++m)
247  {
248  // texture coordinates for each mesh
249  std::vector<Eigen::Vector2f, Eigen::aligned_allocator<Eigen::Vector2f> > texture_map_tmp;
250 
251  // processing for each face
252  for (std::size_t i = 0; i < tex_mesh.tex_polygons[m].size (); ++i)
253  {
254  Eigen::Vector2f tmp_VT;
255  for (std::size_t j = 0; j < tex_mesh.tex_polygons[m][i].vertices.size (); ++j)
256  {
257  std::size_t idx = tex_mesh.tex_polygons[m][i].vertices[j];
258  memcpy (&x_, &tex_mesh.cloud.data[idx * point_size + tex_mesh.cloud.fields[0].offset], sizeof(float));
259  memcpy (&y_, &tex_mesh.cloud.data[idx * point_size + tex_mesh.cloud.fields[1].offset], sizeof(float));
260  memcpy (&z_, &tex_mesh.cloud.data[idx * point_size + tex_mesh.cloud.fields[2].offset], sizeof(float));
261 
262  // calculate uv coordinates
263  tmp_VT[0] = (x_ + x_offset) / x_range;
264  tmp_VT[1] = (z_ + z_offset) / z_range;
265  texture_map_tmp.push_back (tmp_VT);
266  }
267  }// end faces
268 
269  // texture materials
270  tex_material_.tex_name = "material_" + std::to_string(m);
271  tex_material_.tex_file = tex_files_[m];
272  tex_mesh.tex_materials.push_back (tex_material_);
273 
274  // texture coordinates
275  tex_mesh.tex_coordinates.push_back (texture_map_tmp);
276  }// end meshes
277 }
278 
279 ///////////////////////////////////////////////////////////////////////////////////////////////
280 template<typename PointInT> void
282 {
283 
284  if (tex_mesh.tex_polygons.size () != cams.size () + 1)
285  {
286  PCL_ERROR ("The mesh should be divided into nbCamera+1 sub-meshes.\n");
287  PCL_ERROR ("You provided %d cameras and a mesh containing %d sub-meshes.\n", cams.size (), tex_mesh.tex_polygons.size ());
288  return;
289  }
290 
291  PCL_INFO ("You provided %d cameras and a mesh containing %d sub-meshes.\n", cams.size (), tex_mesh.tex_polygons.size ());
292 
293  typename pcl::PointCloud<PointInT>::Ptr originalCloud (new pcl::PointCloud<PointInT>);
294  typename pcl::PointCloud<PointInT>::Ptr camera_transformed_cloud (new pcl::PointCloud<PointInT>);
295 
296  // convert mesh's cloud to pcl format for ease
297  pcl::fromPCLPointCloud2 (tex_mesh.cloud, *originalCloud);
298 
299  for (std::size_t m = 0; m < cams.size (); ++m)
300  {
301  // get current camera parameters
302  Camera current_cam = cams[m];
303 
304  // get camera transform
305  Eigen::Affine3f cam_trans = current_cam.pose;
306 
307  // transform cloud into current camera frame
308  pcl::transformPointCloud (*originalCloud, *camera_transformed_cloud, cam_trans.inverse ());
309 
310  // vector of texture coordinates for each face
311  std::vector<Eigen::Vector2f, Eigen::aligned_allocator<Eigen::Vector2f> > texture_map_tmp;
312 
313  // processing each face visible by this camera
314  for (const auto &tex_polygon : tex_mesh.tex_polygons[m])
315  {
316  Eigen::Vector2f tmp_VT;
317  // for each point of this face
318  for (const auto &vertex : tex_polygon.vertices)
319  {
320  // get point
321  PointInT pt = (*camera_transformed_cloud)[vertex];
322 
323  // compute UV coordinates for this point
324  getPointUVCoordinates (pt, current_cam, tmp_VT);
325  texture_map_tmp.push_back (tmp_VT);
326  }// end points
327  }// end faces
328 
329  // texture materials
330  tex_material_.tex_name = "material_" + std::to_string(m);
331  tex_material_.tex_file = current_cam.texture_file;
332  tex_mesh.tex_materials.push_back (tex_material_);
333 
334  // texture coordinates
335  tex_mesh.tex_coordinates.push_back (texture_map_tmp);
336  }// end cameras
337 
338  // push on extra empty UV map (for unseen faces) so that obj writer does not crash!
339  std::vector<Eigen::Vector2f, Eigen::aligned_allocator<Eigen::Vector2f> > texture_map_tmp;
340  for (const auto &tex_polygon : tex_mesh.tex_polygons[cams.size ()])
341  for (std::size_t j = 0; j < tex_polygon.vertices.size (); ++j)
342  {
343  Eigen::Vector2f tmp_VT;
344  tmp_VT[0] = -1;
345  tmp_VT[1] = -1;
346  texture_map_tmp.push_back (tmp_VT);
347  }
348 
349  tex_mesh.tex_coordinates.push_back (texture_map_tmp);
350 
351  // push on an extra dummy material for the same reason
352  tex_material_.tex_name = "material_" + std::to_string(cams.size());
353  tex_material_.tex_file = "occluded.jpg";
354  tex_mesh.tex_materials.push_back (tex_material_);
355 }
356 
357 ///////////////////////////////////////////////////////////////////////////////////////////////
358 template<typename PointInT> bool
360 {
361  Eigen::Vector3f direction;
362  direction (0) = pt.x;
363  direction (1) = pt.y;
364  direction (2) = pt.z;
365 
366  pcl::Indices indices;
367 
368  PointCloudConstPtr cloud (new PointCloud());
369  cloud = octree->getInputCloud();
370 
371  double distance_threshold = octree->getResolution();
372 
373  // raytrace
374  octree->getIntersectedVoxelIndices(direction, -direction, indices);
375 
376  int nbocc = static_cast<int> (indices.size ());
377  for (const auto &index : indices)
378  {
379  // if intersected point is on the over side of the camera
380  if (pt.z * (*cloud)[index].z < 0)
381  {
382  nbocc--;
383  continue;
384  }
385 
386  if (std::fabs ((*cloud)[index].z - pt.z) <= distance_threshold)
387  {
388  // points are very close to each-other, we do not consider the occlusion
389  nbocc--;
390  }
391  }
392 
393  return (nbocc != 0);
394 }
395 
396 ///////////////////////////////////////////////////////////////////////////////////////////////
397 template<typename PointInT> void
399  PointCloudPtr &filtered_cloud,
400  const double octree_voxel_size, pcl::Indices &visible_indices,
401  pcl::Indices &occluded_indices)
402 {
403  // variable used to filter occluded points by depth
404  double maxDeltaZ = octree_voxel_size;
405 
406  // create an octree to perform rayTracing
407  Octree octree (octree_voxel_size);
408  // create octree structure
409  octree.setInputCloud (input_cloud);
410  // update bounding box automatically
411  octree.defineBoundingBox ();
412  // add points in the tree
413  octree.addPointsFromInputCloud ();
414 
415  visible_indices.clear ();
416 
417  // for each point of the cloud, raycast toward camera and check intersected voxels.
418  Eigen::Vector3f direction;
419  pcl::Indices indices;
420  for (std::size_t i = 0; i < input_cloud->size (); ++i)
421  {
422  direction (0) = (*input_cloud)[i].x;
423  direction (1) = (*input_cloud)[i].y;
424  direction (2) = (*input_cloud)[i].z;
425 
426  // if point is not occluded
427  octree.getIntersectedVoxelIndices (direction, -direction, indices);
428 
429  int nbocc = static_cast<int> (indices.size ());
430  for (const auto &index : indices)
431  {
432  // if intersected point is on the over side of the camera
433  if ((*input_cloud)[i].z * (*input_cloud)[index].z < 0)
434  {
435  nbocc--;
436  continue;
437  }
438 
439  if (std::fabs ((*input_cloud)[index].z - (*input_cloud)[i].z) <= maxDeltaZ)
440  {
441  // points are very close to each-other, we do not consider the occlusion
442  nbocc--;
443  }
444  }
445 
446  if (nbocc == 0)
447  {
448  // point is added in the filtered mesh
449  filtered_cloud->points.push_back ((*input_cloud)[i]);
450  visible_indices.push_back (static_cast<pcl::index_t> (i));
451  }
452  else
453  {
454  occluded_indices.push_back (static_cast<pcl::index_t> (i));
455  }
456  }
457 
458 }
459 
460 ///////////////////////////////////////////////////////////////////////////////////////////////
461 template<typename PointInT> void
462 pcl::TextureMapping<PointInT>::removeOccludedPoints (const pcl::TextureMesh &tex_mesh, pcl::TextureMesh &cleaned_mesh, const double octree_voxel_size)
463 {
464  // copy mesh
465  cleaned_mesh = tex_mesh;
466 
468  typename pcl::PointCloud<PointInT>::Ptr filtered_cloud (new pcl::PointCloud<PointInT>);
469 
470  // load points into a PCL format
471  pcl::fromPCLPointCloud2 (tex_mesh.cloud, *cloud);
472 
473  pcl::Indices visible, occluded;
474  removeOccludedPoints (cloud, filtered_cloud, octree_voxel_size, visible, occluded);
475 
476  // Now that we know which points are visible, let's iterate over each face.
477  // if the face has one invisible point => out!
478  for (std::size_t polygons = 0; polygons < cleaned_mesh.tex_polygons.size (); ++polygons)
479  {
480  // remove all faces from cleaned mesh
481  cleaned_mesh.tex_polygons[polygons].clear ();
482  // iterate over faces
483  for (std::size_t faces = 0; faces < tex_mesh.tex_polygons[polygons].size (); ++faces)
484  {
485  // check if all the face's points are visible
486  bool faceIsVisible = true;
487 
488  // iterate over face's vertex
489  for (const auto &vertex : tex_mesh.tex_polygons[polygons][faces].vertices)
490  {
491  if (find (occluded.begin (), occluded.end (), vertex) == occluded.end ())
492  {
493  // point is not in the occluded vector
494  // PCL_INFO (" VISIBLE!\n");
495  }
496  else
497  {
498  // point was occluded
499  // PCL_INFO(" OCCLUDED!\n");
500  faceIsVisible = false;
501  }
502  }
503 
504  if (faceIsVisible)
505  {
506  cleaned_mesh.tex_polygons[polygons].push_back (tex_mesh.tex_polygons[polygons][faces]);
507  }
508 
509  }
510  }
511 }
512 
513 ///////////////////////////////////////////////////////////////////////////////////////////////
514 template<typename PointInT> void
516  const double octree_voxel_size)
517 {
518  PointCloudPtr cloud (new PointCloud);
519 
520  // load points into a PCL format
521  pcl::fromPCLPointCloud2 (tex_mesh.cloud, *cloud);
522 
523  pcl::Indices visible, occluded;
524  removeOccludedPoints (cloud, filtered_cloud, octree_voxel_size, visible, occluded);
525 
526 }
527 
528 ///////////////////////////////////////////////////////////////////////////////////////////////
529 template<typename PointInT> int
531  const pcl::texture_mapping::CameraVector &cameras, const double octree_voxel_size,
532  PointCloud &visible_pts)
533 {
534  if (tex_mesh.tex_polygons.size () != 1)
535  {
536  PCL_ERROR ("The mesh must contain only 1 sub-mesh!\n");
537  return (-1);
538  }
539 
540  if (cameras.empty ())
541  {
542  PCL_ERROR ("Must provide at least one camera info!\n");
543  return (-1);
544  }
545 
546  // copy mesh
547  sorted_mesh = tex_mesh;
548  // clear polygons from cleaned_mesh
549  sorted_mesh.tex_polygons.clear ();
550 
551  typename pcl::PointCloud<PointInT>::Ptr original_cloud (new pcl::PointCloud<PointInT>);
552  typename pcl::PointCloud<PointInT>::Ptr transformed_cloud (new pcl::PointCloud<PointInT>);
553  typename pcl::PointCloud<PointInT>::Ptr filtered_cloud (new pcl::PointCloud<PointInT>);
554 
555  // load points into a PCL format
556  pcl::fromPCLPointCloud2 (tex_mesh.cloud, *original_cloud);
557 
558  // for each camera
559  for (const auto &camera : cameras)
560  {
561  // get camera pose as transform
562  Eigen::Affine3f cam_trans = camera.pose;
563 
564  // transform original cloud in camera coordinates
565  pcl::transformPointCloud (*original_cloud, *transformed_cloud, cam_trans.inverse ());
566 
567  // find occlusions on transformed cloud
568  pcl::Indices visible, occluded;
569  removeOccludedPoints (transformed_cloud, filtered_cloud, octree_voxel_size, visible, occluded);
570  visible_pts = *filtered_cloud;
571 
572  // pushing occluded idxs into a set for faster lookup
573  std::unordered_set<index_t> occluded_set(occluded.cbegin(), occluded.cend());
574 
575  // find visible faces => add them to polygon N for camera N
576  // add polygon group for current camera in clean
577  std::vector<pcl::Vertices> visibleFaces_currentCam;
578  // iterate over the faces of the current mesh
579  for (std::size_t faces = 0; faces < tex_mesh.tex_polygons[0].size (); ++faces)
580  {
581  // check if all the face's points are visible
582  // iterate over face's vertex
583  const auto faceIsVisible = std::all_of(tex_mesh.tex_polygons[0][faces].vertices.cbegin(),
584  tex_mesh.tex_polygons[0][faces].vertices.cend(),
585  [&](const auto& vertex)
586  {
587  if (occluded_set.find(vertex) != occluded_set.cend()) {
588  return false; // point is occluded
589  }
590  // is the point visible to the camera?
591  Eigen::Vector2f dummy_UV;
592  return this->getPointUVCoordinates ((*transformed_cloud)[vertex], camera, dummy_UV);
593  });
594 
595  if (faceIsVisible)
596  {
597  // push current visible face into the sorted mesh
598  visibleFaces_currentCam.push_back (tex_mesh.tex_polygons[0][faces]);
599  // remove it from the unsorted mesh
600  tex_mesh.tex_polygons[0].erase (tex_mesh.tex_polygons[0].begin () + faces);
601  faces--;
602  }
603 
604  }
605  sorted_mesh.tex_polygons.push_back (visibleFaces_currentCam);
606  }
607 
608  // we should only have occluded and non-visible faces left in tex_mesh.tex_polygons[0]
609  // we need to add them as an extra polygon in the sorted mesh
610  sorted_mesh.tex_polygons.push_back (tex_mesh.tex_polygons[0]);
611  return (0);
612 }
613 
614 ///////////////////////////////////////////////////////////////////////////////////////////////
615 template<typename PointInT> void
618  const double octree_voxel_size, const bool show_nb_occlusions,
619  const int max_occlusions)
620  {
621  // variable used to filter occluded points by depth
622  double maxDeltaZ = octree_voxel_size * 2.0;
623 
624  // create an octree to perform rayTracing
625  Octree octree (octree_voxel_size);
626  // create octree structure
627  octree.setInputCloud (input_cloud);
628  // update bounding box automatically
629  octree.defineBoundingBox ();
630  // add points in the tree
631  octree.addPointsFromInputCloud ();
632 
633  // ray direction
634  Eigen::Vector3f direction;
635 
636  pcl::Indices indices;
637  // point from where we ray-trace
638  pcl::PointXYZI pt;
639 
640  std::vector<double> zDist;
641  std::vector<double> ptDist;
642  // for each point of the cloud, ray-trace toward the camera and check intersected voxels.
643  for (const auto& point: *input_cloud)
644  {
645  direction = pt.getVector3fMap() = point.getVector3fMap();
646 
647  // get number of occlusions for that point
648  indices.clear ();
649  int nbocc = octree.getIntersectedVoxelIndices (direction, -direction, indices);
650 
651  nbocc = static_cast<int> (indices.size ());
652 
653  // TODO need to clean this up and find tricks to get remove aliasaing effect on planes
654  for (const auto &index : indices)
655  {
656  // if intersected point is on the over side of the camera
657  if (pt.z * (*input_cloud)[index].z < 0)
658  {
659  nbocc--;
660  }
661  else if (std::fabs ((*input_cloud)[index].z - pt.z) <= maxDeltaZ)
662  {
663  // points are very close to each-other, we do not consider the occlusion
664  nbocc--;
665  }
666  else
667  {
668  zDist.push_back (std::fabs ((*input_cloud)[index].z - pt.z));
669  ptDist.push_back (pcl::euclideanDistance ((*input_cloud)[index], pt));
670  }
671  }
672 
673  if (show_nb_occlusions)
674  (nbocc <= max_occlusions) ? (pt.intensity = static_cast<float> (nbocc)) : (pt.intensity = static_cast<float> (max_occlusions));
675  else
676  (nbocc == 0) ? (pt.intensity = 0) : (pt.intensity = 1);
677 
678  colored_cloud->points.push_back (pt);
679  }
680 
681  if (zDist.size () >= 2)
682  {
683  std::sort (zDist.begin (), zDist.end ());
684  std::sort (ptDist.begin (), ptDist.end ());
685  }
686 }
687 
688 ///////////////////////////////////////////////////////////////////////////////////////////////
689 template<typename PointInT> void
691  double octree_voxel_size, bool show_nb_occlusions, int max_occlusions)
692 {
693  // load points into a PCL format
695  pcl::fromPCLPointCloud2 (tex_mesh.cloud, *cloud);
696 
697  showOcclusions (cloud, colored_cloud, octree_voxel_size, show_nb_occlusions, max_occlusions);
698 }
699 
700 ///////////////////////////////////////////////////////////////////////////////////////////////
701 template<typename PointInT> void
703 {
704 
705  if (mesh.tex_polygons.size () != 1)
706  return;
707 
709 
710  pcl::fromPCLPointCloud2 (mesh.cloud, *mesh_cloud);
711 
712  std::vector<pcl::Vertices> faces;
713 
714  for (int current_cam = 0; current_cam < static_cast<int> (cameras.size ()); ++current_cam)
715  {
716  PCL_INFO ("Processing camera %d of %d.\n", current_cam+1, cameras.size ());
717 
718  // transform mesh into camera's frame
719  typename pcl::PointCloud<PointInT>::Ptr camera_cloud (new pcl::PointCloud<PointInT>);
720  pcl::transformPointCloud (*mesh_cloud, *camera_cloud, cameras[current_cam].pose.inverse ());
721 
722  // CREATE UV MAP FOR CURRENT FACES
724  std::vector<bool> visibility;
725  visibility.resize (mesh.tex_polygons[current_cam].size ());
726  std::vector<UvIndex> indexes_uv_to_points;
727  // for each current face
728 
729  //TODO change this
730  pcl::PointXY nan_point;
731  nan_point.x = std::numeric_limits<float>::quiet_NaN ();
732  nan_point.y = std::numeric_limits<float>::quiet_NaN ();
733  UvIndex u_null;
734  u_null.idx_cloud = -1;
735  u_null.idx_face = -1;
736 
737  int cpt_invisible=0;
738  for (int idx_face = 0; idx_face < static_cast<int> (mesh.tex_polygons[current_cam].size ()); ++idx_face)
739  {
740  //project each vertice, if one is out of view, stop
741  pcl::PointXY uv_coord1;
742  pcl::PointXY uv_coord2;
743  pcl::PointXY uv_coord3;
744 
745  if (isFaceProjected (cameras[current_cam],
746  (*camera_cloud)[mesh.tex_polygons[current_cam][idx_face].vertices[0]],
747  (*camera_cloud)[mesh.tex_polygons[current_cam][idx_face].vertices[1]],
748  (*camera_cloud)[mesh.tex_polygons[current_cam][idx_face].vertices[2]],
749  uv_coord1,
750  uv_coord2,
751  uv_coord3))
752  {
753  // face is in the camera's FOV
754 
755  // add UV coordinates
756  projections->points.push_back (uv_coord1);
757  projections->points.push_back (uv_coord2);
758  projections->points.push_back (uv_coord3);
759 
760  // remember corresponding face
761  UvIndex u1, u2, u3;
762  u1.idx_cloud = mesh.tex_polygons[current_cam][idx_face].vertices[0];
763  u2.idx_cloud = mesh.tex_polygons[current_cam][idx_face].vertices[1];
764  u3.idx_cloud = mesh.tex_polygons[current_cam][idx_face].vertices[2];
765  u1.idx_face = idx_face; u2.idx_face = idx_face; u3.idx_face = idx_face;
766  indexes_uv_to_points.push_back (u1);
767  indexes_uv_to_points.push_back (u2);
768  indexes_uv_to_points.push_back (u3);
769 
770  //keep track of visibility
771  visibility[idx_face] = true;
772  }
773  else
774  {
775  projections->points.push_back (nan_point);
776  projections->points.push_back (nan_point);
777  projections->points.push_back (nan_point);
778  indexes_uv_to_points.push_back (u_null);
779  indexes_uv_to_points.push_back (u_null);
780  indexes_uv_to_points.push_back (u_null);
781  //keep track of visibility
782  visibility[idx_face] = false;
783  cpt_invisible++;
784  }
785  }
786 
787  // projections contains all UV points of the current faces
788  // indexes_uv_to_points links a uv point to its point in the camera cloud
789  // visibility contains tells if a face was in the camera FOV (false = skip)
790 
791  // TODO handle case were no face could be projected
792  if (visibility.size () - cpt_invisible !=0)
793  {
794  //create kdtree
796  kdtree.setInputCloud (projections);
797 
798  pcl::Indices idxNeighbors;
799  std::vector<float> neighborsSquaredDistance;
800  // af first (idx_pcan < current_cam), check if some of the faces attached to previous cameras occlude the current faces
801  // then (idx_pcam == current_cam), check for self occlusions. At this stage, we skip faces that were already marked as occluded
802  cpt_invisible = 0;
803  for (int idx_pcam = 0 ; idx_pcam <= current_cam ; ++idx_pcam)
804  {
805  // project all faces
806  for (int idx_face = 0; idx_face < static_cast<int> (mesh.tex_polygons[idx_pcam].size ()); ++idx_face)
807  {
808 
809  if (idx_pcam == current_cam && !visibility[idx_face])
810  {
811  // we are now checking for self occlusions within the current faces
812  // the current face was already declared as occluded.
813  // therefore, it cannot occlude another face anymore => we skip it
814  continue;
815  }
816 
817  // project each vertice, if one is out of view, stop
818  pcl::PointXY uv_coord1;
819  pcl::PointXY uv_coord2;
820  pcl::PointXY uv_coord3;
821 
822  if (isFaceProjected (cameras[current_cam],
823  (*camera_cloud)[mesh.tex_polygons[idx_pcam][idx_face].vertices[0]],
824  (*camera_cloud)[mesh.tex_polygons[idx_pcam][idx_face].vertices[1]],
825  (*camera_cloud)[mesh.tex_polygons[idx_pcam][idx_face].vertices[2]],
826  uv_coord1,
827  uv_coord2,
828  uv_coord3))
829  {
830  // face is in the camera's FOV
831  //get its circumsribed circle
832  double radius;
833  pcl::PointXY center;
834  // getTriangleCircumcenterAndSize (uv_coord1, uv_coord2, uv_coord3, center, radius);
835  getTriangleCircumcscribedCircleCentroid(uv_coord1, uv_coord2, uv_coord3, center, radius); // this function yields faster results than getTriangleCircumcenterAndSize
836 
837  // get points inside circ.circle
838  if (kdtree.radiusSearch (center, radius, idxNeighbors, neighborsSquaredDistance) > 0 )
839  {
840  // for each neighbor
841  for (const auto &idxNeighbor : idxNeighbors)
842  {
843  if (std::max ((*camera_cloud)[mesh.tex_polygons[idx_pcam][idx_face].vertices[0]].z,
844  std::max ((*camera_cloud)[mesh.tex_polygons[idx_pcam][idx_face].vertices[1]].z,
845  (*camera_cloud)[mesh.tex_polygons[idx_pcam][idx_face].vertices[2]].z))
846  < (*camera_cloud)[indexes_uv_to_points[idxNeighbor].idx_cloud].z)
847  {
848  // neighbor is farther than all the face's points. Check if it falls into the triangle
849  if (checkPointInsideTriangle(uv_coord1, uv_coord2, uv_coord3, (*projections)[idxNeighbor]))
850  {
851  // current neighbor is inside triangle and is closer => the corresponding face
852  visibility[indexes_uv_to_points[idxNeighbor].idx_face] = false;
853  cpt_invisible++;
854  //TODO we could remove the projections of this face from the kd-tree cloud, but I found it slower, and I need the point to keep ordered to query UV coordinates later
855  }
856  }
857  }
858  }
859  }
860  }
861  }
862  }
863 
864  // now, visibility is true for each face that belongs to the current camera
865  // if a face is not visible, we push it into the next one.
866 
867  if (static_cast<int> (mesh.tex_coordinates.size ()) <= current_cam)
868  {
869  std::vector<Eigen::Vector2f, Eigen::aligned_allocator<Eigen::Vector2f> > dummy_container;
870  mesh.tex_coordinates.push_back (dummy_container);
871  }
872  mesh.tex_coordinates[current_cam].resize (3 * visibility.size ());
873 
874  std::vector<pcl::Vertices> occluded_faces;
875  occluded_faces.resize (visibility.size ());
876  std::vector<pcl::Vertices> visible_faces;
877  visible_faces.resize (visibility.size ());
878 
879  int cpt_occluded_faces = 0;
880  int cpt_visible_faces = 0;
881 
882  for (std::size_t idx_face = 0 ; idx_face < visibility.size () ; ++idx_face)
883  {
884  if (visibility[idx_face])
885  {
886  // face is visible by the current camera copy UV coordinates
887  mesh.tex_coordinates[current_cam][cpt_visible_faces * 3](0) = (*projections)[idx_face*3].x;
888  mesh.tex_coordinates[current_cam][cpt_visible_faces * 3](1) = (*projections)[idx_face*3].y;
889 
890  mesh.tex_coordinates[current_cam][cpt_visible_faces * 3 + 1](0) = (*projections)[idx_face*3 + 1].x;
891  mesh.tex_coordinates[current_cam][cpt_visible_faces * 3 + 1](1) = (*projections)[idx_face*3 + 1].y;
892 
893  mesh.tex_coordinates[current_cam][cpt_visible_faces * 3 + 2](0) = (*projections)[idx_face*3 + 2].x;
894  mesh.tex_coordinates[current_cam][cpt_visible_faces * 3 + 2](1) = (*projections)[idx_face*3 + 2].y;
895 
896  visible_faces[cpt_visible_faces] = mesh.tex_polygons[current_cam][idx_face];
897 
898  cpt_visible_faces++;
899  }
900  else
901  {
902  // face is occluded copy face into temp vector
903  occluded_faces[cpt_occluded_faces] = mesh.tex_polygons[current_cam][idx_face];
904  cpt_occluded_faces++;
905  }
906  }
907  mesh.tex_coordinates[current_cam].resize (cpt_visible_faces*3);
908 
909  occluded_faces.resize (cpt_occluded_faces);
910  mesh.tex_polygons.push_back (occluded_faces);
911 
912  visible_faces.resize (cpt_visible_faces);
913  mesh.tex_polygons[current_cam].clear ();
914  mesh.tex_polygons[current_cam] = visible_faces;
915  }
916 
917  // we have been through all the cameras.
918  // if any faces are left, they were not visible by any camera
919  // we still need to produce uv coordinates for them
920 
921  if (mesh.tex_coordinates.size() <= cameras.size ())
922  {
923  std::vector<Eigen::Vector2f, Eigen::aligned_allocator<Eigen::Vector2f> > dummy_container;
924  mesh.tex_coordinates.push_back(dummy_container);
925  }
926 
927 
928  for(std::size_t idx_face = 0 ; idx_face < mesh.tex_polygons[cameras.size()].size() ; ++idx_face)
929  {
930  Eigen::Vector2f UV1, UV2, UV3;
931  UV1(0) = -1.0; UV1(1) = -1.0;
932  UV2(0) = -1.0; UV2(1) = -1.0;
933  UV3(0) = -1.0; UV3(1) = -1.0;
934  mesh.tex_coordinates[cameras.size()].push_back(UV1);
935  mesh.tex_coordinates[cameras.size()].push_back(UV2);
936  mesh.tex_coordinates[cameras.size()].push_back(UV3);
937  }
938 
939 }
940 
941 ///////////////////////////////////////////////////////////////////////////////////////////////
942 template<typename PointInT> inline void
944 {
945  // we simplify the problem by translating the triangle's origin to its first point
946  pcl::PointXY ptB, ptC;
947  ptB.x = p2.x - p1.x; ptB.y = p2.y - p1.y; // B'=B-A
948  ptC.x = p3.x - p1.x; ptC.y = p3.y - p1.y; // C'=C-A
949 
950  double D = 2.0*(ptB.x*ptC.y - ptB.y*ptC.x); // D'=2(B'x*C'y - B'y*C'x)
951 
952  // Safety check to avoid division by zero
953  if(D == 0)
954  {
955  circomcenter.x = p1.x;
956  circomcenter.y = p1.y;
957  }
958  else
959  {
960  // compute squares once
961  double bx2 = ptB.x * ptB.x; // B'x^2
962  double by2 = ptB.y * ptB.y; // B'y^2
963  double cx2 = ptC.x * ptC.x; // C'x^2
964  double cy2 = ptC.y * ptC.y; // C'y^2
965 
966  // compute circomcenter's coordinates (translate back to original coordinates)
967  circomcenter.x = static_cast<float> (p1.x + (ptC.y*(bx2 + by2) - ptB.y*(cx2 + cy2)) / D);
968  circomcenter.y = static_cast<float> (p1.y + (ptB.x*(cx2 + cy2) - ptC.x*(bx2 + by2)) / D);
969  }
970 
971  radius = std::sqrt( (circomcenter.x - p1.x)*(circomcenter.x - p1.x) + (circomcenter.y - p1.y)*(circomcenter.y - p1.y));//2.0* (p1.x*(p2.y - p3.y) + p2.x*(p3.y - p1.y) + p3.x*(p1.y - p2.y));
972 }
973 
974 ///////////////////////////////////////////////////////////////////////////////////////////////
975 template<typename PointInT> inline void
977 {
978  // compute centroid's coordinates (translate back to original coordinates)
979  circumcenter.x = static_cast<float> (p1.x + p2.x + p3.x ) / 3;
980  circumcenter.y = static_cast<float> (p1.y + p2.y + p3.y ) / 3;
981  double r1 = (circumcenter.x - p1.x) * (circumcenter.x - p1.x) + (circumcenter.y - p1.y) * (circumcenter.y - p1.y) ;
982  double r2 = (circumcenter.x - p2.x) * (circumcenter.x - p2.x) + (circumcenter.y - p2.y) * (circumcenter.y - p2.y) ;
983  double r3 = (circumcenter.x - p3.x) * (circumcenter.x - p3.x) + (circumcenter.y - p3.y) * (circumcenter.y - p3.y) ;
984 
985  // radius
986  radius = std::sqrt( std::max( r1, std::max( r2, r3) )) ;
987 }
988 
989 
990 ///////////////////////////////////////////////////////////////////////////////////////////////
991 template<typename PointInT> inline bool
992 pcl::TextureMapping<PointInT>::getPointUVCoordinates(const PointInT &pt, const Camera &cam, pcl::PointXY &UV_coordinates)
993 {
994  if (pt.z > 0)
995  {
996  // compute image center and dimension
997  double sizeX = cam.width;
998  double sizeY = cam.height;
999  double cx, cy;
1000  if (cam.center_w > 0)
1001  cx = cam.center_w;
1002  else
1003  cx = sizeX / 2.0;
1004  if (cam.center_h > 0)
1005  cy = cam.center_h;
1006  else
1007  cy = sizeY / 2.0;
1008 
1009  double focal_x, focal_y;
1010  if (cam.focal_length_w > 0)
1011  focal_x = cam.focal_length_w;
1012  else
1013  focal_x = cam.focal_length;
1014  if (cam.focal_length_h > 0)
1015  focal_y = cam.focal_length_h;
1016  else
1017  focal_y = cam.focal_length;
1018 
1019  // project point on camera's image plane
1020  UV_coordinates.x = static_cast<float> ((focal_x * (pt.x / pt.z) + cx) / sizeX); //horizontal
1021  UV_coordinates.y = 1.0f - static_cast<float> ((focal_y * (pt.y / pt.z) + cy) / sizeY); //vertical
1022 
1023  // point is visible!
1024  if (UV_coordinates.x >= 0.0 && UV_coordinates.x <= 1.0 && UV_coordinates.y >= 0.0 && UV_coordinates.y <= 1.0)
1025  return (true); // point was visible by the camera
1026  }
1027 
1028  // point is NOT visible by the camera
1029  UV_coordinates.x = -1.0f;
1030  UV_coordinates.y = -1.0f;
1031  return (false); // point was not visible by the camera
1032 }
1033 
1034 ///////////////////////////////////////////////////////////////////////////////////////////////
1035 template<typename PointInT> inline bool
1037 {
1038  // Compute vectors
1039  Eigen::Vector2d v0, v1, v2;
1040  v0(0) = p3.x - p1.x; v0(1) = p3.y - p1.y; // v0= C - A
1041  v1(0) = p2.x - p1.x; v1(1) = p2.y - p1.y; // v1= B - A
1042  v2(0) = pt.x - p1.x; v2(1) = pt.y - p1.y; // v2= P - A
1043 
1044  // Compute dot products
1045  double dot00 = v0.dot(v0); // dot00 = dot(v0, v0)
1046  double dot01 = v0.dot(v1); // dot01 = dot(v0, v1)
1047  double dot02 = v0.dot(v2); // dot02 = dot(v0, v2)
1048  double dot11 = v1.dot(v1); // dot11 = dot(v1, v1)
1049  double dot12 = v1.dot(v2); // dot12 = dot(v1, v2)
1050 
1051  // Compute barycentric coordinates
1052  double invDenom = 1.0 / (dot00*dot11 - dot01*dot01);
1053  double u = (dot11*dot02 - dot01*dot12) * invDenom;
1054  double v = (dot00*dot12 - dot01*dot02) * invDenom;
1055 
1056  // Check if point is in triangle
1057  return ((u >= 0) && (v >= 0) && (u + v < 1));
1058 }
1059 
1060 ///////////////////////////////////////////////////////////////////////////////////////////////
1061 template<typename PointInT> inline bool
1062 pcl::TextureMapping<PointInT>::isFaceProjected (const Camera &camera, const PointInT &p1, const PointInT &p2, const PointInT &p3, pcl::PointXY &proj1, pcl::PointXY &proj2, pcl::PointXY &proj3)
1063 {
1064  return (getPointUVCoordinates(p1, camera, proj1)
1065  &&
1066  getPointUVCoordinates(p2, camera, proj2)
1067  &&
1068  getPointUVCoordinates(p3, camera, proj3)
1069  );
1070 }
1071 
1072 #define PCL_INSTANTIATE_TextureMapping(T) \
1073  template class PCL_EXPORTS pcl::TextureMapping<T>;
1074 
1075 #endif /* TEXTURE_MAPPING_HPP_ */
KdTreeFLANN is a generic type of 3D spatial locator using kD-tree structures.
Definition: kdtree_flann.h:132
int radiusSearch(const PointT &point, double radius, Indices &k_indices, std::vector< float > &k_sqr_distances, unsigned int max_nn=0) const override
Search for all the nearest neighbors of the query point in a given radius.
void setInputCloud(const PointCloudConstPtr &cloud, const IndicesConstPtr &indices=IndicesConstPtr()) override
Provide a pointer to the input dataset.
shared_ptr< PointCloud< PointT > > Ptr
Definition: point_cloud.h:413
std::vector< PointT, Eigen::aligned_allocator< PointT > > points
The point data.
Definition: point_cloud.h:395
bool getPointUVCoordinates(const PointInT &pt, const Camera &cam, Eigen::Vector2f &UV_coordinates)
computes UV coordinates of point, observed by one particular camera
void mapTexture2MeshUV(pcl::TextureMesh &tex_mesh)
Map texture to a mesh UV mapping.
void mapTexture2Mesh(pcl::TextureMesh &tex_mesh)
Map texture to a mesh synthesis algorithm.
void getTriangleCircumcscribedCircleCentroid(const pcl::PointXY &p1, const pcl::PointXY &p2, const pcl::PointXY &p3, pcl::PointXY &circumcenter, double &radius)
Returns the centroid of a triangle and the corresponding circumscribed circle's radius.
typename PointCloud::Ptr PointCloudPtr
typename Octree::Ptr OctreePtr
bool isPointOccluded(const PointInT &pt, const OctreePtr octree)
Check if a point is occluded using raycasting on octree.
bool checkPointInsideTriangle(const pcl::PointXY &p1, const pcl::PointXY &p2, const pcl::PointXY &p3, const pcl::PointXY &pt)
Returns True if a point lays within a triangle.
bool isFaceProjected(const Camera &camera, const PointInT &p1, const PointInT &p2, const PointInT &p3, pcl::PointXY &proj1, pcl::PointXY &proj2, pcl::PointXY &proj3)
Returns true if all the vertices of one face are projected on the camera's image plane.
void removeOccludedPoints(const PointCloudPtr &input_cloud, PointCloudPtr &filtered_cloud, const double octree_voxel_size, pcl::Indices &visible_indices, pcl::Indices &occluded_indices)
Remove occluded points from a point cloud.
std::vector< Eigen::Vector2f, Eigen::aligned_allocator< Eigen::Vector2f > > mapTexture2Face(const Eigen::Vector3f &p1, const Eigen::Vector3f &p2, const Eigen::Vector3f &p3)
Map texture to a face.
int sortFacesByCamera(pcl::TextureMesh &tex_mesh, pcl::TextureMesh &sorted_mesh, const pcl::texture_mapping::CameraVector &cameras, const double octree_voxel_size, PointCloud &visible_pts)
Segment faces by camera visibility.
void getTriangleCircumcenterAndSize(const pcl::PointXY &p1, const pcl::PointXY &p2, const pcl::PointXY &p3, pcl::PointXY &circumcenter, double &radius)
Returns the circumcenter of a triangle and the circle's radius.
void showOcclusions(const PointCloudPtr &input_cloud, pcl::PointCloud< pcl::PointXYZI >::Ptr &colored_cloud, const double octree_voxel_size, const bool show_nb_occlusions=true, const int max_occlusions=4)
Colors a point cloud, depending on its occlusions.
typename PointCloud::ConstPtr PointCloudConstPtr
void mapMultipleTexturesToMeshUV(pcl::TextureMesh &tex_mesh, pcl::texture_mapping::CameraVector &cams)
Map textures acquired from a set of cameras onto a mesh.
void textureMeshwithMultipleCameras(pcl::TextureMesh &mesh, const pcl::texture_mapping::CameraVector &cameras)
Segment and texture faces by camera visibility.
void defineBoundingBox()
Investigate dimensions of pointcloud data set and define corresponding bounding box for octree.
void setInputCloud(const PointCloudConstPtr &cloud_arg, const IndicesConstPtr &indices_arg=IndicesConstPtr())
Provide a pointer to the input data set.
void addPointsFromInputCloud()
Add points from input point cloud to octree.
Octree pointcloud search class
Definition: octree_search.h:58
uindex_t getIntersectedVoxelIndices(Eigen::Vector3f origin, Eigen::Vector3f direction, Indices &k_indices, uindex_t max_voxel_count=0) const
Get indices of all voxels that are intersected by a ray (origin, direction).
Define standard C methods to do distance calculations.
void transformPointCloud(const pcl::PointCloud< PointT > &cloud_in, pcl::PointCloud< PointT > &cloud_out, const Eigen::Matrix< Scalar, 4, 4 > &transform, bool copy_all_fields)
Apply a rigid transform defined by a 4x4 matrix.
Definition: transforms.hpp:221
std::vector< Camera, Eigen::aligned_allocator< Camera > > CameraVector
detail::int_type_t< detail::index_type_size, detail::index_type_signed > index_t
Type used for an index in PCL.
Definition: types.h:112
void fromPCLPointCloud2(const pcl::PCLPointCloud2 &msg, pcl::PointCloud< PointT > &cloud, const MsgFieldMap &field_map, const std::uint8_t *msg_data)
Convert a PCLPointCloud2 binary data blob into a pcl::PointCloud<T> object using a field_map.
Definition: conversions.h:229
float euclideanDistance(const PointType1 &p1, const PointType2 &p2)
Calculate the euclidean distance between the two given points.
Definition: distances.h:204
IndicesAllocator<> Indices
Type used for indices in PCL.
Definition: types.h:133
std::vector<::pcl::PCLPointField > fields
std::vector< std::uint8_t > data
A 2D point structure representing Euclidean xy coordinates.
std::vector< std::vector< pcl::Vertices > > tex_polygons
polygon which is mapped with specific texture defined in TexMaterial
Definition: TextureMesh.h:95
std::vector< std::vector< Eigen::Vector2f, Eigen::aligned_allocator< Eigen::Vector2f > > > tex_coordinates
UV coordinates.
Definition: TextureMesh.h:97
std::vector< pcl::TexMaterial > tex_materials
define texture material
Definition: TextureMesh.h:99
pcl::PCLPointCloud2 cloud
Definition: TextureMesh.h:90
Structure to store camera pose and focal length.
Structure that links a uv coordinate to its 3D point and face.