Point Cloud Library (PCL)  1.13.1-dev
sac_model_cone.h
1 /*
2  * Software License Agreement (BSD License)
3  *
4  * Point Cloud Library (PCL) - www.pointclouds.org
5  * Copyright (c) 2009-2012, Willow Garage, Inc.
6  * Copyright (c) 2012-, Open Perception, Inc.
7  *
8  * All rights reserved.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  *
14  * * Redistributions of source code must retain the above copyright
15  * notice, this list of conditions and the following disclaimer.
16  * * Redistributions in binary form must reproduce the above
17  * copyright notice, this list of conditions and the following
18  * disclaimer in the documentation and/or other materials provided
19  * with the distribution.
20  * * Neither the name of the copyright holder(s) nor the names of its
21  * contributors may be used to endorse or promote products derived
22  * from this software without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
25  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
26  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
27  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
28  * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
29  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
30  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
31  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
32  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
34  * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35  * POSSIBILITY OF SUCH DAMAGE.
36  *
37  */
38 
39 #pragma once
40 
41 #include <pcl/sample_consensus/sac_model.h>
42 #include <pcl/sample_consensus/model_types.h>
43 #include <pcl/common/distances.h>
44 
45 namespace pcl
46 {
47  /** \brief @b SampleConsensusModelCone defines a model for 3D cone segmentation.
48  * The model coefficients are defined as:
49  * <ul>
50  * <li><b>apex.x</b> : the X coordinate of cone's apex
51  * <li><b>apex.y</b> : the Y coordinate of cone's apex
52  * <li><b>apex.z</b> : the Z coordinate of cone's apex
53  * <li><b>axis_direction.x</b> : the X coordinate of the cone's axis direction
54  * <li><b>axis_direction.y</b> : the Y coordinate of the cone's axis direction
55  * <li><b>axis_direction.z</b> : the Z coordinate of the cone's axis direction
56  * <li><b>opening_angle</b> : the cone's opening angle
57  * </ul>
58  * \author Stefan Schrandt
59  * \ingroup sample_consensus
60  */
61  template <typename PointT, typename PointNT>
62  class SampleConsensusModelCone : public SampleConsensusModel<PointT>, public SampleConsensusModelFromNormals<PointT, PointNT>
63  {
64  public:
73 
77 
78  using Ptr = shared_ptr<SampleConsensusModelCone<PointT, PointNT> >;
79  using ConstPtr = shared_ptr<const SampleConsensusModelCone<PointT, PointNT>>;
80 
81  /** \brief Constructor for base SampleConsensusModelCone.
82  * \param[in] cloud the input point cloud dataset
83  * \param[in] random if true set the random seed to the current time, else set to 12345 (default: false)
84  */
85  SampleConsensusModelCone (const PointCloudConstPtr &cloud, bool random = false)
86  : SampleConsensusModel<PointT> (cloud, random)
88  , axis_ (Eigen::Vector3f::Zero ())
89  , eps_angle_ (0)
90  , min_angle_ (-std::numeric_limits<double>::max ())
91  , max_angle_ (std::numeric_limits<double>::max ())
92  {
93  model_name_ = "SampleConsensusModelCone";
94  sample_size_ = 3;
95  model_size_ = 7;
96  }
97 
98  /** \brief Constructor for base SampleConsensusModelCone.
99  * \param[in] cloud the input point cloud dataset
100  * \param[in] indices a vector of point indices to be used from \a cloud
101  * \param[in] random if true set the random seed to the current time, else set to 12345 (default: false)
102  */
104  const Indices &indices,
105  bool random = false)
106  : SampleConsensusModel<PointT> (cloud, indices, random)
108  , axis_ (Eigen::Vector3f::Zero ())
109  , eps_angle_ (0)
110  , min_angle_ (-std::numeric_limits<double>::max ())
111  , max_angle_ (std::numeric_limits<double>::max ())
112  {
113  model_name_ = "SampleConsensusModelCone";
114  sample_size_ = 3;
115  model_size_ = 7;
116  }
117 
118  /** \brief Copy constructor.
119  * \param[in] source the model to copy into this
120  */
124  eps_angle_ (), min_angle_ (), max_angle_ ()
125  {
126  *this = source;
127  model_name_ = "SampleConsensusModelCone";
128  }
129 
130  /** \brief Empty destructor */
131  ~SampleConsensusModelCone () override = default;
132 
133  /** \brief Copy constructor.
134  * \param[in] source the model to copy into this
135  */
138  {
141  axis_ = source.axis_;
142  eps_angle_ = source.eps_angle_;
143  min_angle_ = source.min_angle_;
144  max_angle_ = source.max_angle_;
145  return (*this);
146  }
147 
148  /** \brief Set the angle epsilon (delta) threshold.
149  * \param[in] ea the maximum allowed difference between the cone's axis and the given axis.
150  */
151  inline void
152  setEpsAngle (double ea) { eps_angle_ = ea; }
153 
154  /** \brief Get the angle epsilon (delta) threshold. */
155  inline double
156  getEpsAngle () const { return (eps_angle_); }
157 
158  /** \brief Set the axis along which we need to search for a cone direction.
159  * \param[in] ax the axis along which we need to search for a cone direction
160  */
161  inline void
162  setAxis (const Eigen::Vector3f &ax) { axis_ = ax; }
163 
164  /** \brief Get the axis along which we need to search for a cone direction. */
165  inline Eigen::Vector3f
166  getAxis () const { return (axis_); }
167 
168  /** \brief Set the minimum and maximum allowable opening angle for a cone model
169  * given from a user.
170  * \param[in] min_angle the minimum allowable opening angle of a cone model
171  * \param[in] max_angle the maximum allowable opening angle of a cone model
172  */
173  inline void
174  setMinMaxOpeningAngle (const double &min_angle, const double &max_angle)
175  {
176  min_angle_ = min_angle;
177  max_angle_ = max_angle;
178  }
179 
180  /** \brief Get the opening angle which we need minimum to validate a cone model.
181  * \param[out] min_angle the minimum allowable opening angle of a cone model
182  * \param[out] max_angle the maximum allowable opening angle of a cone model
183  */
184  inline void
185  getMinMaxOpeningAngle (double &min_angle, double &max_angle) const
186  {
187  min_angle = min_angle_;
188  max_angle = max_angle_;
189  }
190 
191  /** \brief Check whether the given index samples can form a valid cone model, compute the model coefficients
192  * from these samples and store them in model_coefficients. The cone coefficients are: apex,
193  * axis_direction, opening_angle.
194  * \param[in] samples the point indices found as possible good candidates for creating a valid model
195  * \param[out] model_coefficients the resultant model coefficients
196  */
197  bool
198  computeModelCoefficients (const Indices &samples,
199  Eigen::VectorXf &model_coefficients) const override;
200 
201  /** \brief Compute all distances from the cloud data to a given cone model.
202  * \param[in] model_coefficients the coefficients of a cone model that we need to compute distances to
203  * \param[out] distances the resultant estimated distances
204  */
205  void
206  getDistancesToModel (const Eigen::VectorXf &model_coefficients,
207  std::vector<double> &distances) const override;
208 
209  /** \brief Select all the points which respect the given model coefficients as inliers.
210  * \param[in] model_coefficients the coefficients of a cone model that we need to compute distances to
211  * \param[in] threshold a maximum admissible distance threshold for determining the inliers from the outliers
212  * \param[out] inliers the resultant model inliers
213  */
214  void
215  selectWithinDistance (const Eigen::VectorXf &model_coefficients,
216  const double threshold,
217  Indices &inliers) override;
218 
219  /** \brief Count all the points which respect the given model coefficients as inliers.
220  *
221  * \param[in] model_coefficients the coefficients of a model that we need to compute distances to
222  * \param[in] threshold maximum admissible distance threshold for determining the inliers from the outliers
223  * \return the resultant number of inliers
224  */
225  std::size_t
226  countWithinDistance (const Eigen::VectorXf &model_coefficients,
227  const double threshold) const override;
228 
229 
230  /** \brief Recompute the cone coefficients using the given inlier set and return them to the user.
231  * @note: these are the coefficients of the cone model after refinement (e.g. after SVD)
232  * \param[in] inliers the data inliers found as supporting the model
233  * \param[in] model_coefficients the initial guess for the optimization
234  * \param[out] optimized_coefficients the resultant recomputed coefficients after non-linear optimization
235  */
236  void
237  optimizeModelCoefficients (const Indices &inliers,
238  const Eigen::VectorXf &model_coefficients,
239  Eigen::VectorXf &optimized_coefficients) const override;
240 
241 
242  /** \brief Create a new point cloud with inliers projected onto the cone model.
243  * \param[in] inliers the data inliers that we want to project on the cone model
244  * \param[in] model_coefficients the coefficients of a cone model
245  * \param[out] projected_points the resultant projected points
246  * \param[in] copy_data_fields set to true if we need to copy the other data fields
247  */
248  void
249  projectPoints (const Indices &inliers,
250  const Eigen::VectorXf &model_coefficients,
251  PointCloud &projected_points,
252  bool copy_data_fields = true) const override;
253 
254  /** \brief Verify whether a subset of indices verifies the given cone model coefficients.
255  * \param[in] indices the data indices that need to be tested against the cone model
256  * \param[in] model_coefficients the cone model coefficients
257  * \param[in] threshold a maximum admissible distance threshold for determining the inliers from the outliers
258  */
259  bool
260  doSamplesVerifyModel (const std::set<index_t> &indices,
261  const Eigen::VectorXf &model_coefficients,
262  const double threshold) const override;
263 
264  /** \brief Return a unique id for this model (SACMODEL_CONE). */
265  inline pcl::SacModel
266  getModelType () const override { return (SACMODEL_CONE); }
267 
268  protected:
271 
272  /** \brief Get the distance from a point to a line (represented by a point and a direction)
273  * \param[in] pt a point
274  * \param[in] model_coefficients the line coefficients (a point on the line, line direction)
275  */
276  double
277  pointToAxisDistance (const Eigen::Vector4f &pt, const Eigen::VectorXf &model_coefficients) const;
278 
279  /** \brief Check whether a model is valid given the user constraints.
280  * \param[in] model_coefficients the set of model coefficients
281  */
282  bool
283  isModelValid (const Eigen::VectorXf &model_coefficients) const override;
284 
285  /** \brief Check if a sample of indices results in a good sample of points
286  * indices. Pure virtual.
287  * \param[in] samples the resultant index samples
288  */
289  bool
290  isSampleGood (const Indices &samples) const override;
291 
292  private:
293  /** \brief The axis along which we need to search for a cone direction. */
294  Eigen::Vector3f axis_;
295 
296  /** \brief The maximum allowed difference between the cone direction and the given axis. */
297  double eps_angle_;
298 
299  /** \brief The minimum and maximum allowed opening angles of valid cone model. */
300  double min_angle_;
301  double max_angle_;
302 
303  /** \brief Functor for the optimization function */
304  struct OptimizationFunctor : pcl::Functor<float>
305  {
306  /** Functor constructor
307  * \param[in] indices the indices of data points to evaluate
308  * \param[in] estimator pointer to the estimator object
309  */
310  OptimizationFunctor (const pcl::SampleConsensusModelCone<PointT, PointNT> *model, const Indices& indices) :
311  pcl::Functor<float> (indices.size ()), model_ (model), indices_ (indices) {}
312 
313  /** Cost function to be minimized
314  * \param[in] x variables array
315  * \param[out] fvec resultant functions evaluations
316  * \return 0
317  */
318  int
319  operator() (const Eigen::VectorXf &x, Eigen::VectorXf &fvec) const
320  {
321  Eigen::Vector4f apex (x[0], x[1], x[2], 0);
322  Eigen::Vector4f axis_dir (x[3], x[4], x[5], 0);
323  float opening_angle = x[6];
324 
325  float apexdotdir = apex.dot (axis_dir);
326  float dirdotdir = 1.0f / axis_dir.dot (axis_dir);
327 
328  for (int i = 0; i < values (); ++i)
329  {
330  // dist = f - r
331  Eigen::Vector4f pt = (*model_->input_)[indices_[i]].getVector4fMap();
332  pt[3] = 0;
333 
334  // Calculate the point's projection on the cone axis
335  float k = (pt.dot (axis_dir) - apexdotdir) * dirdotdir;
336  Eigen::Vector4f pt_proj = apex + k * axis_dir;
337 
338  // Calculate the actual radius of the cone at the level of the projected point
339  Eigen::Vector4f height = apex-pt_proj;
340  float actual_cone_radius = tanf (opening_angle) * height.norm ();
341 
342  fvec[i] = static_cast<float> (pcl::sqrPointToLineDistance (pt, apex, axis_dir) - actual_cone_radius * actual_cone_radius);
343  }
344  return (0);
345  }
346 
348  const Indices &indices_;
349  };
350  };
351 }
352 
353 #ifdef PCL_NO_PRECOMPILE
354 #include <pcl/sample_consensus/impl/sac_model_cone.hpp>
355 #endif
PointCloud represents the base class in PCL for storing collections of 3D points.
Definition: point_cloud.h:173
SampleConsensusModelCone defines a model for 3D cone segmentation.
void optimizeModelCoefficients(const Indices &inliers, const Eigen::VectorXf &model_coefficients, Eigen::VectorXf &optimized_coefficients) const override
Recompute the cone coefficients using the given inlier set and return them to the user.
void setAxis(const Eigen::Vector3f &ax)
Set the axis along which we need to search for a cone direction.
SampleConsensusModelCone(const PointCloudConstPtr &cloud, const Indices &indices, bool random=false)
Constructor for base SampleConsensusModelCone.
SampleConsensusModelCone(const SampleConsensusModelCone &source)
Copy constructor.
~SampleConsensusModelCone() override=default
Empty destructor.
void projectPoints(const Indices &inliers, const Eigen::VectorXf &model_coefficients, PointCloud &projected_points, bool copy_data_fields=true) const override
Create a new point cloud with inliers projected onto the cone model.
pcl::SacModel getModelType() const override
Return a unique id for this model (SACMODEL_CONE).
void getDistancesToModel(const Eigen::VectorXf &model_coefficients, std::vector< double > &distances) const override
Compute all distances from the cloud data to a given cone model.
void selectWithinDistance(const Eigen::VectorXf &model_coefficients, const double threshold, Indices &inliers) override
Select all the points which respect the given model coefficients as inliers.
bool isSampleGood(const Indices &samples) const override
Check if a sample of indices results in a good sample of points indices.
bool computeModelCoefficients(const Indices &samples, Eigen::VectorXf &model_coefficients) const override
Check whether the given index samples can form a valid cone model, compute the model coefficients fro...
bool isModelValid(const Eigen::VectorXf &model_coefficients) const override
Check whether a model is valid given the user constraints.
Eigen::Vector3f getAxis() const
Get the axis along which we need to search for a cone direction.
double pointToAxisDistance(const Eigen::Vector4f &pt, const Eigen::VectorXf &model_coefficients) const
Get the distance from a point to a line (represented by a point and a direction)
void setEpsAngle(double ea)
Set the angle epsilon (delta) threshold.
void getMinMaxOpeningAngle(double &min_angle, double &max_angle) const
Get the opening angle which we need minimum to validate a cone model.
double getEpsAngle() const
Get the angle epsilon (delta) threshold.
bool doSamplesVerifyModel(const std::set< index_t > &indices, const Eigen::VectorXf &model_coefficients, const double threshold) const override
Verify whether a subset of indices verifies the given cone model coefficients.
SampleConsensusModelCone & operator=(const SampleConsensusModelCone &source)
Copy constructor.
void setMinMaxOpeningAngle(const double &min_angle, const double &max_angle)
Set the minimum and maximum allowable opening angle for a cone model given from a user.
SampleConsensusModelCone(const PointCloudConstPtr &cloud, bool random=false)
Constructor for base SampleConsensusModelCone.
std::size_t countWithinDistance(const Eigen::VectorXf &model_coefficients, const double threshold) const override
Count all the points which respect the given model coefficients as inliers.
SampleConsensusModelFromNormals represents the base model class for models that require the use of su...
Definition: sac_model.h:612
SampleConsensusModel represents the base model class.
Definition: sac_model.h:70
shared_ptr< SampleConsensusModel< PointT > > Ptr
Definition: sac_model.h:77
unsigned int sample_size_
The size of a sample from which the model is computed.
Definition: sac_model.h:588
typename PointCloud::ConstPtr PointCloudConstPtr
Definition: sac_model.h:73
IndicesPtr indices_
A pointer to the vector of point indices to use.
Definition: sac_model.h:556
std::string model_name_
The model name.
Definition: sac_model.h:550
unsigned int model_size_
The number of coefficients in the model.
Definition: sac_model.h:591
typename PointCloud::Ptr PointCloudPtr
Definition: sac_model.h:74
shared_ptr< const SampleConsensusModel< PointT > > ConstPtr
Definition: sac_model.h:78
Define standard C methods to do distance calculations.
double sqrPointToLineDistance(const Eigen::Vector4f &pt, const Eigen::Vector4f &line_pt, const Eigen::Vector4f &line_dir)
Get the square distance from a point to a line (represented by a point and a direction)
Definition: distances.h:75
Definition: bfgs.h:10
SacModel
Definition: model_types.h:46
@ SACMODEL_CONE
Definition: model_types.h:53
IndicesAllocator<> Indices
Type used for indices in PCL.
Definition: types.h:133
Base functor all the models that need non linear optimization must define their own one and implement...
Definition: sac_model.h:679
A point structure representing Euclidean xyz coordinates, and the RGB color.