41 #ifndef PCL_FEATURES_IMPL_FEATURE_H_
42 #define PCL_FEATURES_IMPL_FEATURE_H_
44 #include <pcl/search/kdtree.h>
45 #include <pcl/search/organized.h>
53 const Eigen::Vector4f &point,
54 Eigen::Vector4f &plane_parameters,
float &curvature)
56 solvePlaneParameters (covariance_matrix, plane_parameters [0], plane_parameters [1], plane_parameters [2], curvature);
58 plane_parameters[3] = 0;
60 plane_parameters[3] = -1 * plane_parameters.dot (point);
66 float &nx,
float &ny,
float &nz,
float &curvature)
77 EIGEN_ALIGN16 Eigen::Vector3f::Scalar eigen_value;
78 EIGEN_ALIGN16 Eigen::Vector3f eigen_vector;
79 pcl::eigen33 (covariance_matrix, eigen_value, eigen_vector);
81 nx = eigen_vector [0];
82 ny = eigen_vector [1];
83 nz = eigen_vector [2];
86 float eig_sum = covariance_matrix.coeff (0) + covariance_matrix.coeff (4) + covariance_matrix.coeff (8);
88 curvature = std::abs (eigen_value / eig_sum);
94 template <
typename Po
intInT,
typename Po
intOutT>
bool
99 PCL_ERROR (
"[pcl::%s::initCompute] Init failed.\n", getClassName ().c_str ());
104 if (input_->points.empty ())
106 PCL_ERROR (
"[pcl::%s::compute] input_ is empty!\n", getClassName ().c_str ());
115 fake_surface_ =
true;
122 if (surface_->isOrganized () && input_->isOrganized ())
128 if (tree_->getInputCloud () != surface_)
129 tree_->setInputCloud (surface_);
133 if (search_radius_ != 0.0)
137 PCL_ERROR (
"[pcl::%s::compute] ", getClassName ().c_str ());
138 PCL_ERROR (
"Both radius (%f) and K (%d) defined! ", search_radius_, k_);
139 PCL_ERROR (
"Set one of them to zero first and then re-run compute ().\n");
146 search_parameter_ = search_radius_;
148 search_method_surface_ = [
this] (
const PointCloudIn &cloud,
int index,
double radius,
149 pcl::Indices &k_indices, std::vector<float> &k_distances)
151 return tree_->radiusSearch (cloud, index, radius, k_indices, k_distances, 0);
159 search_parameter_ = k_;
162 std::vector<float> &k_distances)
164 return tree_->nearestKSearch (cloud, index, k, k_indices, k_distances);
169 PCL_ERROR (
"[pcl::%s::compute] Neither radius nor K defined! ", getClassName ().c_str ());
170 PCL_ERROR (
"Set one of them to a positive number first and then re-run compute ().\n");
180 template <
typename Po
intInT,
typename Po
intOutT>
bool
187 fake_surface_ =
false;
193 template <
typename Po
intInT,
typename Po
intOutT>
void
204 output.
header = input_->header;
207 if (output.
size () != indices_->size ())
208 output.
resize (indices_->size ());
212 if (indices_->size () != input_->points.size () || input_->width * input_->height == 0)
214 output.
width = indices_->size ();
219 output.
width = input_->width;
220 output.
height = input_->height;
225 computeFeature (output);
231 template <
typename Po
intInT,
typename Po
intNT,
typename Po
intOutT>
bool
236 PCL_ERROR (
"[pcl::%s::initCompute] Init failed.\n", getClassName ().c_str ());
243 PCL_ERROR (
"[pcl::%s::initCompute] No input dataset containing normals was given!\n", getClassName ().c_str ());
249 if (normals_->points.size () != surface_->points.size ())
251 PCL_ERROR (
"[pcl::%s::initCompute] ", getClassName ().c_str ());
252 PCL_ERROR(
"The number of points in the surface dataset (%zu) differs from ",
253 static_cast<std::size_t
>(surface_->points.size()));
254 PCL_ERROR(
"the number of points in the dataset containing the normals (%zu)!\n",
255 static_cast<std::size_t
>(normals_->points.size()));
264 template <
typename Po
intInT,
typename Po
intLT,
typename Po
intOutT>
bool
269 PCL_ERROR (
"[pcl::%s::initCompute] Init failed.\n", getClassName ().c_str ());
276 PCL_ERROR (
"[pcl::%s::initCompute] No input dataset containing labels was given!\n", getClassName ().c_str ());
282 if (labels_->points.size () != surface_->points.size ())
284 PCL_ERROR (
"[pcl::%s::initCompute] The number of points in the input dataset differs from the number of points in the dataset containing the labels!\n", getClassName ().c_str ());
293 template <
typename Po
intInT,
typename Po
intRFT>
bool
297 if (frames_never_defined_)
305 PCL_ERROR (
"[initLocalReferenceFrames] No input dataset containing reference frames was given!\n");
311 lrf_estimation->compute (*default_frames);
312 frames_ = default_frames;
317 if (frames_->points.size () != indices_size)
321 PCL_ERROR (
"[initLocalReferenceFrames] The number of points in the input dataset differs from the number of points in the dataset containing the reference frames!\n");
327 lrf_estimation->compute (*default_frames);
328 frames_ = default_frames;
virtual bool initCompute()
This method should get called before starting the actual computation.
virtual bool initCompute()
This method should get called before starting the actual computation.
Feature represents the base feature class.
virtual bool initCompute()
This method should get called before starting the actual computation.
virtual bool deinitCompute()
This method should get called after ending the actual computation.
void compute(PointCloudOut &output)
Base method for feature estimation for all points given in <setInputCloud (), setIndices ()> using th...
typename PointCloudLRF::Ptr PointCloudLRFPtr
typename Feature< PointInT, PointRFT >::Ptr LRFEstimationPtr
Check if frames_ has been correctly initialized and compute it if needed.
virtual bool initLocalReferenceFrames(const std::size_t &indices_size, const LRFEstimationPtr &lrf_estimation=LRFEstimationPtr())
bool is_dense
True if no points are invalid (e.g., have NaN or Inf values in any of their floating point fields).
void resize(std::size_t count)
Resizes the container to contain count elements.
std::uint32_t width
The point cloud width (if organized as an image-structure).
pcl::PCLHeader header
The point cloud header.
std::uint32_t height
The point cloud height (if organized as an image-structure).
void clear()
Removes all points in a cloud and sets the width and height to 0.
search::KdTree is a wrapper class which inherits the pcl::KdTree class for performing search function...
OrganizedNeighbor is a class for optimized nearest neighbor search in organized projectable point clo...
void eigen33(const Matrix &mat, typename Matrix::Scalar &eigenvalue, Vector &eigenvector)
determines the eigenvector and eigenvalue of the smallest eigenvalue of the symmetric positive semi d...
void solvePlaneParameters(const Eigen::Matrix3f &covariance_matrix, const Eigen::Vector4f &point, Eigen::Vector4f &plane_parameters, float &curvature)
Solve the eigenvalues and eigenvectors of a given 3x3 covariance matrix, and estimate the least-squar...
IndicesAllocator<> Indices
Type used for indices in PCL.