Point Cloud Library (PCL)  1.14.1-dev
convolution_3d.hpp
1 /*
2  * Software License Agreement (BSD License)
3  *
4  * Point Cloud Library (PCL) - www.pointclouds.org
5  * Copyright (c) 2010-2012, Willow Garage, Inc.
6  *
7  * All rights reserved.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  *
13  * * Redistributions of source code must retain the above copyright
14  * notice, this list of conditions and the following disclaimer.
15  * * Redistributions in binary form must reproduce the above
16  * copyright notice, this list of conditions and the following
17  * disclaimer in the documentation and/or other materials provided
18  * with the distribution.
19  * * Neither the name of the copyright holder(s) nor the names of its
20  * contributors may be used to endorse or promote products derived
21  * from this software without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
24  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
25  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
26  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
27  * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
28  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
29  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
30  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
31  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
33  * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
34  * POSSIBILITY OF SUCH DAMAGE.
35  *
36  * $Id$
37  *
38  */
39 
40 #ifndef PCL_FILTERS_CONVOLUTION_3D_IMPL_HPP
41 #define PCL_FILTERS_CONVOLUTION_3D_IMPL_HPP
42 
43 #include <pcl/common/point_tests.h> // for isFinite
44 #include <pcl/search/organized.h>
45 #include <pcl/search/kdtree.h>
46 #include <pcl/pcl_config.h>
47 #include <pcl/point_types.h>
48 #include <pcl/common/point_tests.h>
49 
50 #include <cmath>
51 #include <cstdint>
52 #include <limits>
53 #include <vector>
54 
55 ///////////////////////////////////////////////////////////////////////////////////////////////////
56 namespace pcl
57 {
58  namespace filters
59  {
60  template <typename PointT>
62  {
63  void
65  {
66  n.normal_x = n.normal_y = n.normal_z = std::numeric_limits<float>::quiet_NaN ();
67  }
68  };
69 
70  template <typename PointT> class
72  {
73  void
74  makeInfinite (pcl::PointXY& p)
75  {
76  p.x = p.y = std::numeric_limits<float>::quiet_NaN ();
77  }
78  };
79  }
80 }
81 
82 ///////////////////////////////////////////////////////////////////////////////////////////////////
83 template<typename PointInT, typename PointOutT> bool
85 {
86  if (sigma_ == 0)
87  {
88  PCL_ERROR ("Sigma is not set or equal to 0!\n", sigma_);
89  return (false);
90  }
91  sigma_sqr_ = sigma_ * sigma_;
92 
93  if (sigma_coefficient_)
94  {
95  if ((*sigma_coefficient_) > 6 || (*sigma_coefficient_) < 3)
96  {
97  PCL_ERROR ("Sigma coefficient (%f) out of [3..6]!\n", (*sigma_coefficient_));
98  return (false);
99  }
100  else
101  threshold_ = (*sigma_coefficient_) * (*sigma_coefficient_) * sigma_sqr_;
102  }
103 
104  return (true);
105 }
106 
107 ///////////////////////////////////////////////////////////////////////////////////////////////////
108 template<typename PointInT, typename PointOutT> PointOutT
110  const std::vector<float>& distances)
111 {
112  using namespace pcl::common;
113  PointOutT result;
114  float total_weight = 0;
115  std::vector<float>::const_iterator dist_it = distances.begin ();
116 
117  for (Indices::const_iterator idx_it = indices.begin ();
118  idx_it != indices.end ();
119  ++idx_it, ++dist_it)
120  {
121  if (*dist_it <= threshold_ && isFinite ((*input_) [*idx_it]))
122  {
123  float weight = std::exp (-0.5f * (*dist_it) / sigma_sqr_);
124  result += weight * (*input_) [*idx_it];
125  total_weight += weight;
126  }
127  }
128  if (total_weight != 0)
129  result /= total_weight;
130  else
131  makeInfinite (result);
132 
133  return (result);
134 }
135 
136 ///////////////////////////////////////////////////////////////////////////////////////////////////////
137 template<typename PointInT, typename PointOutT> PointOutT
138 pcl::filters::GaussianKernelRGB<PointInT, PointOutT>::operator() (const Indices& indices, const std::vector<float>& distances)
139 {
140  using namespace pcl::common;
141  PointOutT result;
142  float total_weight = 0;
143  float r = 0, g = 0, b = 0;
144  std::vector<float>::const_iterator dist_it = distances.begin ();
145 
146  for (Indices::const_iterator idx_it = indices.begin ();
147  idx_it != indices.end ();
148  ++idx_it, ++dist_it)
149  {
150  if (*dist_it <= threshold_ && isFinite ((*input_) [*idx_it]))
151  {
152  float weight = std::exp (-0.5f * (*dist_it) / sigma_sqr_);
153  result.x += weight * (*input_) [*idx_it].x;
154  result.y += weight * (*input_) [*idx_it].y;
155  result.z += weight * (*input_) [*idx_it].z;
156  r += weight * static_cast<float> ((*input_) [*idx_it].r);
157  g += weight * static_cast<float> ((*input_) [*idx_it].g);
158  b += weight * static_cast<float> ((*input_) [*idx_it].b);
159  total_weight += weight;
160  }
161  }
162  if (total_weight != 0)
163  {
164  total_weight = 1.f/total_weight;
165  r*= total_weight; g*= total_weight; b*= total_weight;
166  result.x*= total_weight; result.y*= total_weight; result.z*= total_weight;
167  result.r = static_cast<std::uint8_t> (r);
168  result.g = static_cast<std::uint8_t> (g);
169  result.b = static_cast<std::uint8_t> (b);
170  }
171  else
172  makeInfinite (result);
173 
174  return (result);
175 }
176 
177 ///////////////////////////////////////////////////////////////////////////////////////////////////
178 template <typename PointInT, typename PointOutT, typename KernelT>
180  : PCLBase <PointInT> ()
181  , surface_ ()
182  , tree_ ()
183  , search_radius_ (0)
184 {}
185 
186 ///////////////////////////////////////////////////////////////////////////////////////////////////
187 template <typename PointInT, typename PointOutT, typename KernelT> bool
189 {
191  {
192  PCL_ERROR ("[pcl::filters::Convlution3D::initCompute] init failed!\n");
193  return (false);
194  }
195  // Initialize the spatial locator
196  if (!tree_)
197  {
198  if (input_->isOrganized ())
199  tree_.reset (new pcl::search::OrganizedNeighbor<PointInT> ());
200  else
201  tree_.reset (new pcl::search::KdTree<PointInT> (false));
202  }
203  // If no search surface has been defined, use the input dataset as the search surface itself
204  if (!surface_)
205  surface_ = input_;
206  // Send the surface dataset to the spatial locator
207  tree_->setInputCloud (surface_);
208  // Do a fast check to see if the search parameters are well defined
209  if (search_radius_ <= 0.0)
210  {
211  PCL_ERROR ("[pcl::filters::Convlution3D::initCompute] search radius (%f) must be > 0\n",
212  search_radius_);
213  return (false);
214  }
215  // Make sure the provided kernel implements the required interface
216  if (dynamic_cast<ConvolvingKernel<PointInT, PointOutT>* > (&kernel_) == 0)
217  {
218  PCL_ERROR ("[pcl::filters::Convlution3D::initCompute] init failed : ");
219  PCL_ERROR ("kernel_ must implement ConvolvingKernel interface\n!");
220  return (false);
221  }
222  kernel_.setInputCloud (surface_);
223  // Initialize convolving kernel
224  if (!kernel_.initCompute ())
225  {
226  PCL_ERROR ("[pcl::filters::Convlution3D::initCompute] kernel initialization failed!\n");
227  return (false);
228  }
229  return (true);
230 }
231 
232 ///////////////////////////////////////////////////////////////////////////////////////////////////
233 template <typename PointInT, typename PointOutT, typename KernelT> void
235 {
236  if (!initCompute ())
237  {
238  PCL_ERROR ("[pcl::filters::Convlution3D::convolve] init failed!\n");
239  return;
240  }
241  output.resize (surface_->size ());
242  output.width = surface_->width;
243  output.height = surface_->height;
244  output.is_dense = surface_->is_dense;
245  Indices nn_indices;
246  std::vector<float> nn_distances;
247 
248 #pragma omp parallel for \
249  default(none) \
250  shared(output) \
251  firstprivate(nn_indices, nn_distances) \
252  num_threads(threads_) \
253  schedule(dynamic, 64)
254  for (std::int64_t point_idx = 0; point_idx < static_cast<std::int64_t> (surface_->size ()); ++point_idx)
255  {
256  const PointInT& point_in = surface_->points [point_idx];
257  PointOutT& point_out = output [point_idx];
258  if (isFinite (point_in) &&
259  tree_->radiusSearch (point_in, search_radius_, nn_indices, nn_distances))
260  {
261  point_out = kernel_ (nn_indices, nn_distances);
262  }
263  else
264  {
265  kernel_.makeInfinite (point_out);
266  output.is_dense = false;
267  }
268  }
269 }
270 
271 #endif
PCL base class.
Definition: pcl_base.h:70
PointCloud represents the base class in PCL for storing collections of 3D points.
Definition: point_cloud.h:173
bool is_dense
True if no points are invalid (e.g., have NaN or Inf values in any of their floating point fields).
Definition: point_cloud.h:403
void resize(std::size_t count)
Resizes the container to contain count elements.
Definition: point_cloud.h:462
std::uint32_t width
The point cloud width (if organized as an image-structure).
Definition: point_cloud.h:398
std::uint32_t height
The point cloud height (if organized as an image-structure).
Definition: point_cloud.h:400
bool initCompute()
initialize computation
void convolve(PointCloudOut &output)
Convolve point cloud.
Class ConvolvingKernel base class for all convolving kernels.
static void makeInfinite(PointOutT &p)
Utility function that annihilates a point making it fail the pcl::isFinite test.
virtual PointOutT operator()(const Indices &indices, const std::vector< float > &distances)
Convolve point at the center of this local information.
bool initCompute()
Must call this method before doing any computation.
PointOutT operator()(const Indices &indices, const std::vector< float > &distances)
Convolve point at the center of this local information.
search::KdTree is a wrapper class which inherits the pcl::KdTree class for performing search function...
Definition: kdtree.h:62
OrganizedNeighbor is a class for optimized nearest neighbor search in organized projectable point clo...
Definition: organized.h:66
Defines all the PCL implemented PointT point type structures.
bool isFinite(const PointT &pt)
Tests if the 3D components of a point are all finite param[in] pt point to be tested return true if f...
Definition: point_tests.h:55
IndicesAllocator<> Indices
Type used for indices in PCL.
Definition: types.h:133
A point structure representing normal coordinates and the surface curvature estimate.
A 2D point structure representing Euclidean xy coordinates.
A point structure representing Euclidean xyz coordinates, and the RGB color.