40 #ifndef PCL_FILTERS_CONVOLUTION_3D_IMPL_HPP
41 #define PCL_FILTERS_CONVOLUTION_3D_IMPL_HPP
43 #include <pcl/common/point_tests.h>
44 #include <pcl/search/organized.h>
45 #include <pcl/search/kdtree.h>
46 #include <pcl/pcl_config.h>
48 #include <pcl/common/point_tests.h>
60 template <
typename Po
intT>
66 n.normal_x = n.normal_y = n.normal_z = std::numeric_limits<float>::quiet_NaN ();
70 template <
typename Po
intT>
class
76 p.
x = p.
y = std::numeric_limits<float>::quiet_NaN ();
83 template<
typename Po
intInT,
typename Po
intOutT>
bool
88 PCL_ERROR (
"Sigma is not set or equal to 0!\n", sigma_);
91 sigma_sqr_ = sigma_ * sigma_;
93 if (sigma_coefficient_)
95 if ((*sigma_coefficient_) > 6 || (*sigma_coefficient_) < 3)
97 PCL_ERROR (
"Sigma coefficient (%f) out of [3..6]!\n", (*sigma_coefficient_));
101 threshold_ = (*sigma_coefficient_) * (*sigma_coefficient_) * sigma_sqr_;
108 template<
typename Po
intInT,
typename Po
intOutT> PointOutT
110 const std::vector<float>& distances)
114 float total_weight = 0;
115 std::vector<float>::const_iterator dist_it = distances.begin ();
117 for (Indices::const_iterator idx_it = indices.begin ();
118 idx_it != indices.end ();
121 if (*dist_it <= threshold_ &&
isFinite ((*input_) [*idx_it]))
123 float weight = std::exp (-0.5f * (*dist_it) / sigma_sqr_);
124 result += weight * (*input_) [*idx_it];
125 total_weight += weight;
128 if (total_weight != 0)
129 result /= total_weight;
131 makeInfinite (result);
137 template<
typename Po
intInT,
typename Po
intOutT> PointOutT
142 float total_weight = 0;
143 float r = 0, g = 0, b = 0;
144 std::vector<float>::const_iterator dist_it = distances.begin ();
146 for (Indices::const_iterator idx_it = indices.begin ();
147 idx_it != indices.end ();
150 if (*dist_it <= threshold_ &&
isFinite ((*input_) [*idx_it]))
152 float weight = std::exp (-0.5f * (*dist_it) / sigma_sqr_);
153 result.x += weight * (*input_) [*idx_it].x;
154 result.y += weight * (*input_) [*idx_it].y;
155 result.z += weight * (*input_) [*idx_it].z;
156 r += weight *
static_cast<float> ((*input_) [*idx_it].r);
157 g += weight *
static_cast<float> ((*input_) [*idx_it].g);
158 b += weight *
static_cast<float> ((*input_) [*idx_it].b);
159 total_weight += weight;
162 if (total_weight != 0)
164 total_weight = 1.f/total_weight;
165 r*= total_weight; g*= total_weight; b*= total_weight;
166 result.x*= total_weight; result.y*= total_weight; result.z*= total_weight;
167 result.r =
static_cast<std::uint8_t
> (r);
168 result.g =
static_cast<std::uint8_t
> (g);
169 result.b =
static_cast<std::uint8_t
> (b);
172 makeInfinite (result);
178 template <
typename Po
intInT,
typename Po
intOutT,
typename KernelT>
187 template <
typename Po
intInT,
typename Po
intOutT,
typename KernelT>
bool
192 PCL_ERROR (
"[pcl::filters::Convlution3D::initCompute] init failed!\n");
198 if (input_->isOrganized ())
207 tree_->setInputCloud (surface_);
209 if (search_radius_ <= 0.0)
211 PCL_ERROR (
"[pcl::filters::Convlution3D::initCompute] search radius (%f) must be > 0\n",
218 PCL_ERROR (
"[pcl::filters::Convlution3D::initCompute] init failed : ");
219 PCL_ERROR (
"kernel_ must implement ConvolvingKernel interface\n!");
222 kernel_.setInputCloud (surface_);
224 if (!kernel_.initCompute ())
226 PCL_ERROR (
"[pcl::filters::Convlution3D::initCompute] kernel initialization failed!\n");
233 template <
typename Po
intInT,
typename Po
intOutT,
typename KernelT>
void
238 PCL_ERROR (
"[pcl::filters::Convlution3D::convolve] init failed!\n");
241 output.
resize (surface_->size ());
242 output.
width = surface_->width;
243 output.
height = surface_->height;
244 output.
is_dense = surface_->is_dense;
246 std::vector<float> nn_distances;
248 #pragma omp parallel for \
251 firstprivate(nn_indices, nn_distances) \
252 num_threads(threads_) \
253 schedule(dynamic, 64)
254 for (std::int64_t point_idx = 0; point_idx < static_cast<std::int64_t> (surface_->size ()); ++point_idx)
256 const PointInT& point_in = surface_->points [point_idx];
257 PointOutT& point_out = output [point_idx];
259 tree_->radiusSearch (point_in, search_radius_, nn_indices, nn_distances))
261 point_out = kernel_ (nn_indices, nn_distances);
265 kernel_.makeInfinite (point_out);
PointCloud represents the base class in PCL for storing collections of 3D points.
bool is_dense
True if no points are invalid (e.g., have NaN or Inf values in any of their floating point fields).
void resize(std::size_t count)
Resizes the container to contain count elements.
std::uint32_t width
The point cloud width (if organized as an image-structure).
std::uint32_t height
The point cloud height (if organized as an image-structure).
bool initCompute()
initialize computation
void convolve(PointCloudOut &output)
Convolve point cloud.
Convolution3D()
Constructor.
Class ConvolvingKernel base class for all convolving kernels.
static void makeInfinite(PointOutT &p)
Utility function that annihilates a point making it fail the pcl::isFinite test.
virtual PointOutT operator()(const Indices &indices, const std::vector< float > &distances)
Convolve point at the center of this local information.
bool initCompute()
Must call this method before doing any computation.
PointOutT operator()(const Indices &indices, const std::vector< float > &distances)
Convolve point at the center of this local information.
search::KdTree is a wrapper class which inherits the pcl::KdTree class for performing search function...
OrganizedNeighbor is a class for optimized nearest neighbor search in organized projectable point clo...
Defines all the PCL implemented PointT point type structures.
bool isFinite(const PointT &pt)
Tests if the 3D components of a point are all finite param[in] pt point to be tested return true if f...
IndicesAllocator<> Indices
Type used for indices in PCL.
A point structure representing normal coordinates and the surface curvature estimate.
A 2D point structure representing Euclidean xy coordinates.
A point structure representing Euclidean xyz coordinates, and the RGB color.