Point Cloud Library (PCL)  1.14.1-dev
convolution_3d.h
1 /*
2  * Software License Agreement (BSD License)
3  *
4  * Point Cloud Library (PCL) - www.pointclouds.org
5  * Copyright (c) 2010-2012, Willow Garage, Inc.
6  *
7  * All rights reserved.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  *
13  * * Redistributions of source code must retain the above copyright
14  * notice, this list of conditions and the following disclaimer.
15  * * Redistributions in binary form must reproduce the above
16  * copyright notice, this list of conditions and the following
17  * disclaimer in the documentation and/or other materials provided
18  * with the distribution.
19  * * Neither the name of the copyright holder(s) nor the names of its
20  * contributors may be used to endorse or promote products derived
21  * from this software without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
24  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
25  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
26  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
27  * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
28  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
29  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
30  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
31  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
33  * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
34  * POSSIBILITY OF SUCH DAMAGE.
35  *
36  * $Id$
37  *
38  */
39 
40 #pragma once
41 
42 #include <pcl/pcl_base.h>
43 #include <pcl/search/search.h> // for pcl::search::Search
44 #include <boost/optional.hpp>
45 #include <pcl/search/search.h>
46 
47 namespace pcl
48 {
49  namespace filters
50  {
51  /** \brief Class ConvolvingKernel base class for all convolving kernels
52  * \ingroup filters
53  */
54  template<typename PointInT, typename PointOutT>
56  {
57  public:
58  using Ptr = shared_ptr<ConvolvingKernel<PointInT, PointOutT> >;
59  using ConstPtr = shared_ptr<const ConvolvingKernel<PointInT, PointOutT> >;
60 
62 
63  /// \brief empty constructor
65 
66  /// \brief empty destructor
67  virtual ~ConvolvingKernel() = default;
68 
69  /** \brief Set input cloud
70  * \param[in] input source point cloud
71  */
72  void
73  setInputCloud (const PointCloudInConstPtr& input) { input_ = input; }
74 
75  /** \brief Convolve point at the center of this local information
76  * \param[in] indices indices of the point in the source point cloud
77  * \param[in] distances euclidean distance squared from the query point
78  * \return the convolved point
79  */
80  virtual PointOutT
81  operator() (const Indices& indices, const std::vector<float>& distances) = 0;
82 
83  /** \brief Must call this method before doing any computation
84  * \note make sure to override this with at least
85  * \code
86  * bool initCompute ()
87  * {
88  * return (true);
89  * }
90  * \endcode
91  * in your kernel interface, else you are going nowhere!
92  */
93  virtual bool
94  initCompute () { return false; }
95 
96  /** \brief Utility function that annihilates a point making it fail the \ref pcl::isFinite test
97  * \param p point to annihilate
98  */
99  static void
100  makeInfinite (PointOutT& p)
101  {
102  p.x = p.y = p.z = std::numeric_limits<float>::quiet_NaN ();
103  }
104 
105  protected:
106  /// source cloud
108  };
109 
110  /** \brief Gaussian kernel implementation interface
111  * Use this as implementation reference
112  * \ingroup filters
113  */
114  template<typename PointInT, typename PointOutT>
115  class GaussianKernel : public ConvolvingKernel <PointInT, PointOutT>
116  {
117  public:
122  using Ptr = shared_ptr<GaussianKernel<PointInT, PointOutT> >;
123  using ConstPtr = shared_ptr<GaussianKernel<PointInT, PointOutT> >;
124 
125  /** Default constructor */
127  : ConvolvingKernel <PointInT, PointOutT> ()
128  , sigma_ (0)
129  , threshold_ (std::numeric_limits<float>::infinity ())
130  {}
131 
132  /** Set the sigma parameter of the Gaussian
133  * \param[in] sigma
134  */
135  inline void
136  setSigma (float sigma) { sigma_ = sigma; }
137 
138  /** Set the distance threshold relative to a sigma factor i.e. points such as
139  * ||pi - q|| > sigma_coefficient^2 * sigma^2 are not considered.
140  */
141  inline void
142  setThresholdRelativeToSigma (float sigma_coefficient)
143  {
144  sigma_coefficient_.reset (sigma_coefficient);
145  }
146 
147  /** Set the distance threshold such as pi, ||pi - q|| > threshold are not considered. */
148  inline void
149  setThreshold (float threshold) { threshold_ = threshold; }
150 
151  /** Must call this method before doing any computation */
152  bool initCompute ();
153 
154  virtual PointOutT
155  operator() (const Indices& indices, const std::vector<float>& distances);
156 
157  protected:
158  float sigma_;
159  float sigma_sqr_;
160  float threshold_;
161  boost::optional<float> sigma_coefficient_;
162  };
163 
164  /** \brief Gaussian kernel implementation interface with RGB channel handling
165  * Use this as implementation reference
166  * \ingroup filters
167  */
168  template<typename PointInT, typename PointOutT>
169  class GaussianKernelRGB : public GaussianKernel <PointInT, PointOutT>
170  {
171  public:
178  using Ptr = shared_ptr<GaussianKernelRGB<PointInT, PointOutT> >;
179  using ConstPtr = shared_ptr<GaussianKernelRGB<PointInT, PointOutT> >;
180 
181  /** Default constructor */
183  : GaussianKernel <PointInT, PointOutT> ()
184  {}
185 
186  PointOutT
187  operator() (const Indices& indices, const std::vector<float>& distances);
188  };
189 
190  /** Convolution3D handles the non organized case where width and height are unknown or if you
191  * are only interested in convolving based on local neighborhood information.
192  * The convolving kernel MUST be a radial symmetric and implement \ref ConvolvingKernel
193  * interface.
194  */
195  template <typename PointIn, typename PointOut, typename KernelT>
196  class Convolution3D : public pcl::PCLBase <PointIn>
197  {
198  public:
202  using KdTreePtr = typename KdTree::Ptr;
204  using Ptr = shared_ptr<Convolution3D<PointIn, PointOut, KernelT> >;
205  using ConstPtr = shared_ptr<Convolution3D<PointIn, PointOut, KernelT> >;
206 
209 
210  /** \brief Constructor */
211  Convolution3D ();
212 
213  /** \brief Initialize the scheduler and set the number of threads to use.
214  * \param nr_threads the number of hardware threads to use (0 sets the value back to automatic)
215  */
216  inline void
217  setNumberOfThreads (unsigned int nr_threads = 0) { threads_ = nr_threads; }
218 
219  /** \brief Set convolving kernel
220  * \param[in] kernel convolving element
221  */
222  inline void
223  setKernel (const KernelT& kernel) { kernel_ = kernel; }
224 
225  /** \brief Provide a pointer to the input dataset that we need to estimate features at every point for.
226  * \param cloud the const boost shared pointer to a PointCloud message
227  */
228  inline void
229  setSearchSurface (const PointCloudInConstPtr &cloud) { surface_ = cloud; }
230 
231  /** \brief Get a pointer to the surface point cloud dataset. */
232  inline PointCloudInConstPtr
233  getSearchSurface () { return (surface_); }
234 
235  /** \brief Provide a pointer to the search object.
236  * \param tree a pointer to the spatial search object.
237  */
238  inline void
239  setSearchMethod (const KdTreePtr &tree) { tree_ = tree; }
240 
241  /** \brief Get a pointer to the search method used. */
242  inline KdTreePtr
243  getSearchMethod () { return (tree_); }
244 
245  /** \brief Set the sphere radius that is to be used for determining the nearest neighbors
246  * \param radius the sphere radius used as the maximum distance to consider a point a neighbor
247  */
248  inline void
249  setRadiusSearch (double radius) { search_radius_ = radius; }
250 
251  /** \brief Get the sphere radius used for determining the neighbors. */
252  inline double
254 
255  /** Convolve point cloud.
256  * \param[out] output the convolved cloud
257  */
258  void
259  convolve (PointCloudOut& output);
260 
261  protected:
262  /** \brief initialize computation */
263  bool initCompute ();
264 
265  /** \brief An input point cloud describing the surface that is to be used for nearest neighbors estimation. */
267 
268  /** \brief A pointer to the spatial search object. */
270 
271  /** \brief The nearest neighbors search radius for each point. */
273 
274  /** \brief number of threads */
275  unsigned int threads_;
276 
277  /** \brief convlving kernel */
278  KernelT kernel_;
279  };
280  }
281 }
282 
283 #include <pcl/filters/impl/convolution_3d.hpp>
PCL base class.
Definition: pcl_base.h:70
PointCloud represents the base class in PCL for storing collections of 3D points.
Definition: point_cloud.h:173
shared_ptr< const PointCloud< PointT > > ConstPtr
Definition: point_cloud.h:414
Convolution3D handles the non organized case where width and height are unknown or if you are only in...
KdTreePtr getSearchMethod()
Get a pointer to the search method used.
void setKernel(const KernelT &kernel)
Set convolving kernel.
bool initCompute()
initialize computation
typename KdTree::Ptr KdTreePtr
KernelT kernel_
convlving kernel
double getRadiusSearch()
Get the sphere radius used for determining the neighbors.
void setNumberOfThreads(unsigned int nr_threads=0)
Initialize the scheduler and set the number of threads to use.
void setSearchSurface(const PointCloudInConstPtr &cloud)
Provide a pointer to the input dataset that we need to estimate features at every point for.
typename PointCloudIn::ConstPtr PointCloudInConstPtr
void setRadiusSearch(double radius)
Set the sphere radius that is to be used for determining the nearest neighbors.
KdTreePtr tree_
A pointer to the spatial search object.
PointCloudInConstPtr surface_
An input point cloud describing the surface that is to be used for nearest neighbors estimation.
unsigned int threads_
number of threads
shared_ptr< Convolution3D< PointIn, PointOut, KernelT > > Ptr
void setSearchMethod(const KdTreePtr &tree)
Provide a pointer to the search object.
void convolve(PointCloudOut &output)
Convolve point cloud.
pcl::PointCloud< PointOut > PointCloudOut
PointCloudInConstPtr getSearchSurface()
Get a pointer to the surface point cloud dataset.
shared_ptr< Convolution3D< PointIn, PointOut, KernelT > > ConstPtr
double search_radius_
The nearest neighbors search radius for each point.
Class ConvolvingKernel base class for all convolving kernels.
shared_ptr< ConvolvingKernel< PointInT, PointOutT > > Ptr
virtual PointOutT operator()(const Indices &indices, const std::vector< float > &distances)=0
Convolve point at the center of this local information.
ConvolvingKernel()
empty constructor
static void makeInfinite(PointOutT &p)
Utility function that annihilates a point making it fail the pcl::isFinite test.
PointCloudInConstPtr input_
source cloud
shared_ptr< const ConvolvingKernel< PointInT, PointOutT > > ConstPtr
typename PointCloud< PointInT >::ConstPtr PointCloudInConstPtr
void setInputCloud(const PointCloudInConstPtr &input)
Set input cloud.
virtual ~ConvolvingKernel()=default
empty destructor
virtual bool initCompute()
Must call this method before doing any computation.
Gaussian kernel implementation interface Use this as implementation reference.
void setThresholdRelativeToSigma(float sigma_coefficient)
Set the distance threshold relative to a sigma factor i.e.
boost::optional< float > sigma_coefficient_
virtual PointOutT operator()(const Indices &indices, const std::vector< float > &distances)
Convolve point at the center of this local information.
void setSigma(float sigma)
Set the sigma parameter of the Gaussian.
bool initCompute()
Must call this method before doing any computation.
GaussianKernel()
Default constructor.
void setThreshold(float threshold)
Set the distance threshold such as pi, ||pi - q|| > threshold are not considered.
Gaussian kernel implementation interface with RGB channel handling Use this as implementation referen...
PointOutT operator()(const Indices &indices, const std::vector< float > &distances)
Convolve point at the center of this local information.
GaussianKernelRGB()
Default constructor.
Generic search class.
Definition: search.h:75
shared_ptr< pcl::search::Search< PointT > > Ptr
Definition: search.h:81
IndicesAllocator<> Indices
Type used for indices in PCL.
Definition: types.h:133