Point Cloud Library (PCL)  1.15.1-dev
mls.h
1 /*
2  * Software License Agreement (BSD License)
3  *
4  * Point Cloud Library (PCL) - www.pointclouds.org
5  * Copyright (c) 2009-2011, Willow Garage, Inc.
6  *
7  * All rights reserved.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  *
13  * * Redistributions of source code must retain the above copyright
14  * notice, this list of conditions and the following disclaimer.
15  * * Redistributions in binary form must reproduce the above
16  * copyright notice, this list of conditions and the following
17  * disclaimer in the documentation and/or other materials provided
18  * with the distribution.
19  * * Neither the name of Willow Garage, Inc. nor the names of its
20  * contributors may be used to endorse or promote products derived
21  * from this software without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
24  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
25  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
26  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
27  * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
28  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
29  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
30  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
31  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
33  * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
34  * POSSIBILITY OF SUCH DAMAGE.
35  *
36  * $Id$
37  *
38  */
39 
40 #pragma once
41 
42 #include <functional>
43 #include <map>
44 #include <random>
45 #include <Eigen/Core> // for Vector3i, Vector3d, ...
46 
47 // PCL includes
48 #include <pcl/memory.h>
49 #include <pcl/pcl_base.h>
50 #include <pcl/pcl_macros.h>
51 #include <pcl/search/search.h> // for Search
52 #include <pcl/point_types.h> // for pcl::Normal
53 
54 #include <pcl/surface/processing.h>
55 
56 namespace pcl
57 {
58 
59  /** \brief Data structure used to store the results of the MLS fitting */
60  struct MLSResult
61  {
63  {
64  NONE, /**< \brief Project to the mls plane. */
65  SIMPLE, /**< \brief Project along the mls plane normal to the polynomial surface. */
66  ORTHOGONAL /**< \brief Project to the closest point on the polynonomial surface. */
67  };
68 
69  /** \brief Data structure used to store the MLS polynomial partial derivatives */
71  {
72  double z; /**< \brief The z component of the polynomial evaluated at z(u, v). */
73  double z_u; /**< \brief The partial derivative dz/du. */
74  double z_v; /**< \brief The partial derivative dz/dv. */
75  double z_uu; /**< \brief The partial derivative d^2z/du^2. */
76  double z_vv; /**< \brief The partial derivative d^2z/dv^2. */
77  double z_uv; /**< \brief The partial derivative d^2z/dudv. */
78  };
79 
80  /** \brief Data structure used to store the MLS projection results */
82  {
83  MLSProjectionResults () = default;
84 
85  double u{0.0}; /**< \brief The u-coordinate of the projected point in local MLS frame. */
86  double v{0.0}; /**< \brief The v-coordinate of the projected point in local MLS frame. */
87  Eigen::Vector3d point; /**< \brief The projected point. */
88  Eigen::Vector3d normal; /**< \brief The projected point's normal. */
90  };
91 
92  inline
93  MLSResult () : num_neighbors (0), curvature (0.0f), order (0), valid (false) {}
94 
95  inline
96  MLSResult (const Eigen::Vector3d &a_query_point,
97  const Eigen::Vector3d &a_mean,
98  const Eigen::Vector3d &a_plane_normal,
99  const Eigen::Vector3d &a_u,
100  const Eigen::Vector3d &a_v,
101  const Eigen::VectorXd &a_c_vec,
102  const int a_num_neighbors,
103  const float a_curvature,
104  const int a_order);
105 
106  /** \brief Given a point calculate its 3D location in the MLS frame.
107  * \param[in] pt The point
108  * \param[out] u The u-coordinate of the point in local MLS frame.
109  * \param[out] v The v-coordinate of the point in local MLS frame.
110  * \param[out] w The w-coordinate of the point in local MLS frame.
111  */
112  inline void
113  getMLSCoordinates (const Eigen::Vector3d &pt, double &u, double &v, double &w) const;
114 
115  /** \brief Given a point calculate its 2D location in the MLS frame.
116  * \param[in] pt The point
117  * \param[out] u The u-coordinate of the point in local MLS frame.
118  * \param[out] v The v-coordinate of the point in local MLS frame.
119  */
120  inline void
121  getMLSCoordinates (const Eigen::Vector3d &pt, double &u, double &v) const;
122 
123  /** \brief Calculate the polynomial
124  * \param[in] u The u-coordinate of the point in local MLS frame.
125  * \param[in] v The v-coordinate of the point in local MLS frame.
126  * \return The polynomial value at the provided uv coordinates.
127  */
128  inline double
129  getPolynomialValue (const double u, const double v) const;
130 
131  /** \brief Calculate the polynomial's first and second partial derivatives.
132  * \param[in] u The u-coordinate of the point in local MLS frame.
133  * \param[in] v The v-coordinate of the point in local MLS frame.
134  * \return The polynomial partial derivatives at the provided uv coordinates.
135  */
136  inline PolynomialPartialDerivative
137  getPolynomialPartialDerivative (const double u, const double v) const;
138 
139  /** \brief Calculate the principal curvatures using the polynomial surface.
140  * \param[in] u The u-coordinate of the point in local MLS frame.
141  * \param[in] v The v-coordinate of the point in local MLS frame.
142  * \return The principal curvature [k1, k2] at the provided uv coordinates.
143  * \note If an error occurs then 1e-5 is returned.
144  */
145  Eigen::Vector2f
146  calculatePrincipalCurvatures (const double u, const double v) const;
147 
148  /** \brief Project a point orthogonal to the polynomial surface.
149  * \param[in] u The u-coordinate of the point in local MLS frame.
150  * \param[in] v The v-coordinate of the point in local MLS frame.
151  * \param[in] w The w-coordinate of the point in local MLS frame.
152  * \return The MLSProjectionResults for the input data.
153  * \note If the MLSResults does not contain polynomial data it projects the point onto the mls plane.
154  * \note If the optimization diverges it performs a simple projection on to the polynomial surface.
155  * \note This was implemented based on this https://math.stackexchange.com/questions/1497093/shortest-distance-between-point-and-surface
156  */
157  inline MLSProjectionResults
158  projectPointOrthogonalToPolynomialSurface (const double u, const double v, const double w) const;
159 
160  /** \brief Project a point onto the MLS plane.
161  * \param[in] u The u-coordinate of the point in local MLS frame.
162  * \param[in] v The v-coordinate of the point in local MLS frame.
163  * \return The MLSProjectionResults for the input data.
164  */
165  inline MLSProjectionResults
166  projectPointToMLSPlane (const double u, const double v) const;
167 
168  /** \brief Project a point along the MLS plane normal to the polynomial surface.
169  * \param[in] u The u-coordinate of the point in local MLS frame.
170  * \param[in] v The v-coordinate of the point in local MLS frame.
171  * \return The MLSProjectionResults for the input data.
172  * \note If the MLSResults does not contain polynomial data it projects the point onto the mls plane.
173  */
174  inline MLSProjectionResults
175  projectPointSimpleToPolynomialSurface (const double u, const double v) const;
176 
177  /**
178  * \brief Project a point using the specified method.
179  * \param[in] pt The point to be project.
180  * \param[in] method The projection method to be used.
181  * \param[in] required_neighbors The minimum number of neighbors required.
182  * \note If required_neighbors is 0 then any number of neighbors is allowed.
183  * \note If required_neighbors is not satisfied it projects to the mls plane.
184  * \return The MLSProjectionResults for the input data.
185  */
186  inline MLSProjectionResults
187  projectPoint (const Eigen::Vector3d &pt, ProjectionMethod method, int required_neighbors = 0) const;
188 
189  /**
190  * \brief Project the query point used to generate the mls surface about using the specified method.
191  * \param[in] method The projection method to be used.
192  * \param[in] required_neighbors The minimum number of neighbors required.
193  * \note If required_neighbors is 0 then any number of neighbors is allowed.
194  * \note If required_neighbors is not satisfied it projects to the mls plane.
195  * \return The MLSProjectionResults for the input data.
196  */
197  inline MLSProjectionResults
198  projectQueryPoint (ProjectionMethod method, int required_neighbors = 0) const;
199 
200  /** \brief Smooth a given point and its neighborhood using Moving Least Squares.
201  * \param[in] cloud the input cloud, used together with index and nn_indices
202  * \param[in] index the index of the query point in the input cloud
203  * \param[in] nn_indices the set of nearest neighbors indices for pt
204  * \param[in] search_radius the search radius used to find nearest neighbors for pt
205  * \param[in] polynomial_order the order of the polynomial to fit to the nearest neighbors
206  * \param[in] weight_func defines the weight function for the polynomial fit
207  */
208  template <typename PointT> void
210  pcl::index_t index,
211  const pcl::Indices &nn_indices,
212  double search_radius,
213  int polynomial_order = 2,
214  std::function<double(const double)> weight_func = {});
215 
216  Eigen::Vector3d query_point; /**< \brief The query point about which the mls surface was generated */
217  Eigen::Vector3d mean; /**< \brief The mean point of all the neighbors. */
218  Eigen::Vector3d plane_normal; /**< \brief The normal of the local plane of the query point. */
219  Eigen::Vector3d u_axis; /**< \brief The axis corresponding to the u-coordinates of the local plane of the query point. */
220  Eigen::Vector3d v_axis; /**< \brief The axis corresponding to the v-coordinates of the local plane of the query point. */
221  Eigen::VectorXd c_vec; /**< \brief The polynomial coefficients Example: z = c_vec[0] + c_vec[1]*v + c_vec[2]*v^2 + c_vec[3]*u + c_vec[4]*u*v + c_vec[5]*u^2 */
222  int num_neighbors; /**< \brief The number of neighbors used to create the mls surface. */
223  float curvature; /**< \brief The curvature at the query point. */
224  int order; /**< \brief The order of the polynomial. If order > 1 then use polynomial fit */
225  bool valid; /**< \brief If True, the mls results data is valid, otherwise False. */
227  private:
228  /**
229  * \brief The default weight function used when fitting a polynomial surface
230  * \param sq_dist the squared distance from a point to origin of the mls frame
231  * \param sq_mls_radius the squraed mls search radius used
232  * \return The weight for a point at squared distance from the origin of the mls frame
233  */
234  inline
235  double computeMLSWeight (const double sq_dist, const double sq_mls_radius) { return (std::exp (-sq_dist / sq_mls_radius)); }
236 
237  };
238 
239  /** \brief MovingLeastSquares represent an implementation of the MLS (Moving Least Squares) algorithm
240  * for data smoothing and improved normal estimation. It also contains methods for upsampling the
241  * resulting cloud based on the parametric fit.
242  * Reference paper: "Computing and Rendering Point Set Surfaces" by Marc Alexa, Johannes Behr,
243  * Daniel Cohen-Or, Shachar Fleishman, David Levin and Claudio T. Silva
244  * www.sci.utah.edu/~shachar/Publications/crpss.pdf
245  * \note There is a parallelized version of the processing step, using the OpenMP standard.
246  * Compared to the standard version, an overhead is incurred in terms of runtime and memory usage.
247  * The upsampling methods DISTINCT_CLOUD and VOXEL_GRID_DILATION are not parallelized completely,
248  * i.e. parts of the algorithm run on a single thread only.
249  * \author Zoltan Csaba Marton, Radu B. Rusu, Alexandru E. Ichim, Suat Gedikli, Robert Huitl
250  * \ingroup surface
251  */
252  template <typename PointInT, typename PointOutT>
253  class MovingLeastSquares : public CloudSurfaceProcessing<PointInT, PointOutT>
254  {
255  public:
256  using Ptr = shared_ptr<MovingLeastSquares<PointInT, PointOutT> >;
257  using ConstPtr = shared_ptr<const MovingLeastSquares<PointInT, PointOutT> >;
258 
264 
266  using KdTreePtr = typename KdTree::Ptr;
269 
273 
277 
278  using SearchMethod = std::function<int (pcl::index_t, double, pcl::Indices &, std::vector<float> &)>;
279 
281  {
282  NONE, /**< \brief No upsampling will be done, only the input points will be projected
283  to their own MLS surfaces. */
284  DISTINCT_CLOUD, /**< \brief Project the points of the distinct cloud to the MLS surface. */
285  SAMPLE_LOCAL_PLANE, /**< \brief The local plane of each input point will be sampled in a circular fashion
286  using the \ref upsampling_radius_ and the \ref upsampling_step_ parameters. */
287  RANDOM_UNIFORM_DENSITY, /**< \brief The local plane of each input point will be sampled using an uniform random
288  distribution such that the density of points is constant throughout the
289  cloud - given by the \ref desired_num_points_in_radius_ parameter. */
290  VOXEL_GRID_DILATION /**< \brief The input cloud will be inserted into a voxel grid with voxels of
291  size \ref voxel_size_; this voxel grid will be dilated \ref dilation_iteration_num_
292  times and the resulting points will be projected to the MLS surface
293  of the closest point in the input cloud; the result is a point cloud
294  with filled holes and a constant point density. */
295  };
296 
297  /** \brief Empty constructor. */
298  MovingLeastSquares () : CloudSurfaceProcessing<PointInT, PointOutT> (),
299  distinct_cloud_ (),
300  tree_ (),
301 
303 
304  rng_uniform_distribution_ ()
305  {};
306 
307  /** \brief Empty destructor */
308  ~MovingLeastSquares () override = default;
309 
310 
311  /** \brief Set whether the algorithm should also store the normals computed
312  * \note This is optional, but need a proper output cloud type
313  */
314  inline void
315  setComputeNormals (bool compute_normals) { compute_normals_ = compute_normals; }
316 
317  /** \brief Provide a pointer to the search object.
318  * \param[in] tree a pointer to the spatial search object.
319  */
320  inline void
322  {
323  tree_ = tree;
324  // Declare the search locator definition
325  search_method_ = [this] (pcl::index_t index, double radius, pcl::Indices& k_indices, std::vector<float>& k_sqr_distances)
326  {
327  return tree_->radiusSearch (index, radius, k_indices, k_sqr_distances, 0);
328  };
329  }
330 
331  /** \brief Get a pointer to the search method used. */
332  inline KdTreePtr
333  getSearchMethod () const { return (tree_); }
334 
335  /** \brief Set the order of the polynomial to be fit.
336  * \param[in] order the order of the polynomial
337  * \note Setting order > 1 indicates using a polynomial fit.
338  */
339  inline void
340  setPolynomialOrder (int order) { order_ = order; }
341 
342  /** \brief Get the order of the polynomial to be fit. */
343  inline int
344  getPolynomialOrder () const { return (order_); }
345 
346  /** \brief Set the sphere radius that is to be used for determining the k-nearest neighbors used for fitting.
347  * \param[in] radius the sphere radius that is to contain all k-nearest neighbors
348  * \note Calling this method resets the squared Gaussian parameter to radius * radius !
349  */
350  inline void
352 
353  /** \brief Get the sphere radius used for determining the k-nearest neighbors. */
354  inline double
355  getSearchRadius () const { return (search_radius_); }
356 
357  /** \brief Set the parameter used for distance based weighting of neighbors (the square of the search radius works
358  * best in general).
359  * \param[in] sqr_gauss_param the squared Gaussian parameter
360  */
361  inline void
362  setSqrGaussParam (double sqr_gauss_param) { sqr_gauss_param_ = sqr_gauss_param; }
363 
364  /** \brief Get the parameter for distance based weighting of neighbors. */
365  inline double
366  getSqrGaussParam () const { return (sqr_gauss_param_); }
367 
368  /** \brief Set the upsampling method to be used
369  * \param method
370  */
371  inline void
373 
374  /** \brief Set the distinct cloud used for the DISTINCT_CLOUD upsampling method. */
375  inline void
376  setDistinctCloud (PointCloudInConstPtr distinct_cloud) { distinct_cloud_ = distinct_cloud; }
377 
378  /** \brief Get the distinct cloud used for the DISTINCT_CLOUD upsampling method. */
379  inline PointCloudInConstPtr
380  getDistinctCloud () const { return (distinct_cloud_); }
381 
382 
383  /** \brief Set the radius of the circle in the local point plane that will be sampled
384  * \note Used only in the case of SAMPLE_LOCAL_PLANE upsampling
385  * \param[in] radius the radius of the circle
386  */
387  inline void
388  setUpsamplingRadius (double radius) { upsampling_radius_ = radius; }
389 
390  /** \brief Get the radius of the circle in the local point plane that will be sampled
391  * \note Used only in the case of SAMPLE_LOCAL_PLANE upsampling
392  */
393  inline double
395 
396  /** \brief Set the step size for the local plane sampling
397  * \note Used only in the case of SAMPLE_LOCAL_PLANE upsampling
398  * \param[in] step_size the step size
399  */
400  inline void
401  setUpsamplingStepSize (double step_size) { upsampling_step_ = step_size; }
402 
403 
404  /** \brief Get the step size for the local plane sampling
405  * \note Used only in the case of SAMPLE_LOCAL_PLANE upsampling
406  */
407  inline double
409 
410  /** \brief Set the parameter that specifies the desired number of points within the search radius
411  * \note Used only in the case of RANDOM_UNIFORM_DENSITY upsampling
412  * \param[in] desired_num_points_in_radius the desired number of points in the output cloud in a sphere of
413  * radius \ref search_radius_ around each point
414  */
415  inline void
416  setPointDensity (int desired_num_points_in_radius) { desired_num_points_in_radius_ = desired_num_points_in_radius; }
417 
418 
419  /** \brief Get the parameter that specifies the desired number of points within the search radius
420  * \note Used only in the case of RANDOM_UNIFORM_DENSITY upsampling
421  */
422  inline int
424 
425  /** \brief Set the voxel size for the voxel grid
426  * \note Used only in the VOXEL_GRID_DILATION upsampling method
427  * \param[in] voxel_size the edge length of a cubic voxel in the voxel grid
428  */
429  inline void
430  setDilationVoxelSize (float voxel_size) { voxel_size_ = voxel_size; }
431 
432 
433  /** \brief Get the voxel size for the voxel grid
434  * \note Used only in the VOXEL_GRID_DILATION upsampling method
435  */
436  inline float
437  getDilationVoxelSize () const { return (voxel_size_); }
438 
439  /** \brief Set the number of dilation steps of the voxel grid
440  * \note Used only in the VOXEL_GRID_DILATION upsampling method
441  * \param[in] iterations the number of dilation iterations
442  */
443  inline void
444  setDilationIterations (int iterations) { dilation_iteration_num_ = iterations; }
445 
446  /** \brief Get the number of dilation steps of the voxel grid
447  * \note Used only in the VOXEL_GRID_DILATION upsampling method
448  */
449  inline int
451 
452  /** \brief Set whether the mls results should be stored for each point in the input cloud
453  * \param[in] cache_mls_results True if the mls results should be stored, otherwise false.
454  * \note The cache_mls_results_ is forced to be true when using upsampling method VOXEL_GRID_DILATION or DISTINCT_CLOUD.
455  * \note If memory consumption is a concern, then set it to false when not using upsampling method VOXEL_GRID_DILATION or DISTINCT_CLOUD.
456  */
457  inline void
458  setCacheMLSResults (bool cache_mls_results) { cache_mls_results_ = cache_mls_results; }
459 
460  /** \brief Get the cache_mls_results_ value (True if the mls results should be stored, otherwise false). */
461  inline bool
462  getCacheMLSResults () const { return (cache_mls_results_); }
463 
464  /** \brief Set the method to be used when projection the point on to the MLS surface.
465  * \param method
466  * \note This is only used when polynomial fit is enabled.
467  */
468  inline void
470 
471 
472  /** \brief Get the current projection method being used. */
475 
476  /** \brief Get the MLSResults for input cloud
477  * \note The results are only stored if setCacheMLSResults(true) was called or when using the upsampling method DISTINCT_CLOUD or VOXEL_GRID_DILATION.
478  * \note This vector is aligned with the input cloud indices, so use getCorrespondingIndices to get the correct results when using output cloud indices.
479  */
480  inline const std::vector<MLSResult>&
481  getMLSResults () const { return (mls_results_); }
482 
483  /** \brief Set the maximum number of threads to use
484  * \param threads the maximum number of hardware threads to use (0 sets the value to 1)
485  */
486  inline void
487  setNumberOfThreads (unsigned int threads = 1)
488  {
489  threads_ = threads;
490  }
491 
492  /** \brief Base method for surface reconstruction for all points given in <setInputCloud (), setIndices ()>
493  * \param[out] output the resultant reconstructed surface model
494  */
495  void
496  process (PointCloudOut &output) override;
497 
498 
499  /** \brief Get the set of indices with each point in output having the
500  * corresponding point in input */
501  inline PointIndicesPtr
503 
504  protected:
505  /** \brief The point cloud that will hold the estimated normals, if set. */
507 
508  /** \brief The distinct point cloud that will be projected to the MLS surface. */
510 
511  /** \brief The search method template for indices. */
513 
514  /** \brief A pointer to the spatial search object. */
515  KdTreePtr tree_{nullptr};
516 
517  /** \brief The order of the polynomial to be fit. */
518  int order_{2};
519 
520  /** \brief The nearest neighbors search radius for each point. */
521  double search_radius_{0.0};
522 
523  /** \brief Parameter for distance based weighting of neighbors (search_radius_ * search_radius_ works fine) */
524  double sqr_gauss_param_{0.0};
525 
526  /** \brief Parameter that specifies whether the normals should be computed for the input cloud or not */
527  bool compute_normals_{false};
528 
529  /** \brief Parameter that specifies the upsampling method to be used */
531 
532  /** \brief Radius of the circle in the local point plane that will be sampled
533  * \note Used only in the case of SAMPLE_LOCAL_PLANE upsampling
534  */
535  double upsampling_radius_{0.0};
536 
537  /** \brief Step size for the local plane sampling
538  * \note Used only in the case of SAMPLE_LOCAL_PLANE upsampling
539  */
540  double upsampling_step_{0.0};
541 
542  /** \brief Parameter that specifies the desired number of points within the search radius
543  * \note Used only in the case of RANDOM_UNIFORM_DENSITY upsampling
544  */
546 
547  /** \brief True if the mls results for the input cloud should be stored
548  * \note This is forced to be true when using upsampling methods VOXEL_GRID_DILATION or DISTINCT_CLOUD.
549  */
550  bool cache_mls_results_{true};
551 
552  /** \brief Stores the MLS result for each point in the input cloud
553  * \note Used only in the case of VOXEL_GRID_DILATION or DISTINCT_CLOUD upsampling
554  */
555  std::vector<MLSResult> mls_results_{};
556 
557  /** \brief Parameter that specifies the projection method to be used. */
559 
560  /** \brief The maximum number of threads the scheduler should use. */
561  unsigned int threads_{1};
562 
563 
564  /** \brief A minimalistic implementation of a voxel grid, necessary for the point cloud upsampling
565  * \note Used only in the case of VOXEL_GRID_DILATION upsampling
566  */
568  {
569  public:
570  struct Leaf { Leaf () = default; bool valid{true}; };
571 
573  IndicesPtr &indices,
574  float voxel_size,
575  int dilation_iteration_num);
576 
577  void
578  dilate ();
579 
580  inline void
581  getIndexIn1D (const Eigen::Vector3i &index, std::uint64_t &index_1d) const
582  {
583  index_1d = index[0] * data_size_ * data_size_ +
584  index[1] * data_size_ + index[2];
585  }
586 
587  inline void
588  getIndexIn3D (std::uint64_t index_1d, Eigen::Vector3i& index_3d) const
589  {
590  index_3d[0] = static_cast<Eigen::Vector3i::Scalar> (index_1d / (data_size_ * data_size_));
591  index_1d -= index_3d[0] * data_size_ * data_size_;
592  index_3d[1] = static_cast<Eigen::Vector3i::Scalar> (index_1d / data_size_);
593  index_1d -= index_3d[1] * data_size_;
594  index_3d[2] = static_cast<Eigen::Vector3i::Scalar> (index_1d);
595  }
596 
597  inline void
598  getCellIndex (const Eigen::Vector3f &p, Eigen::Vector3i& index) const
599  {
600  for (int i = 0; i < 3; ++i)
601  index[i] = static_cast<Eigen::Vector3i::Scalar> ((p[i] - bounding_min_ (i)) / voxel_size_);
602  }
603 
604  inline void
605  getPosition (const std::uint64_t &index_1d, Eigen::Vector3f &point) const
606  {
607  Eigen::Vector3i index_3d;
608  getIndexIn3D (index_1d, index_3d);
609  for (int i = 0; i < 3; ++i)
610  point[i] = static_cast<Eigen::Vector3f::Scalar> (index_3d[i]) * voxel_size_ + bounding_min_[i];
611  }
612 
613  using HashMap = std::map<std::uint64_t, Leaf>;
615  Eigen::Vector4f bounding_min_, bounding_max_;
616  std::uint64_t data_size_{0};
617  float voxel_size_;
619  };
620 
621 
622  /** \brief Voxel size for the VOXEL_GRID_DILATION upsampling method */
623  float voxel_size_{1.0f};
624 
625  /** \brief Number of dilation steps for the VOXEL_GRID_DILATION upsampling method */
627 
628  /** \brief Number of coefficients, to be computed from the requested order.*/
629  int nr_coeff_{0};
630 
631  /** \brief Collects for each point in output the corresponding point in the input. */
633 
634  /** \brief Search for the nearest neighbors of a given point using a radius search
635  * \param[in] index the index of the query point
636  * \param[out] indices the resultant vector of indices representing the neighbors within search_radius_
637  * \param[out] sqr_distances the resultant squared distances from the query point to the neighbors within search_radius_
638  */
639  inline int
640  searchForNeighbors (pcl::index_t index, pcl::Indices &indices, std::vector<float> &sqr_distances) const
641  {
642  return (search_method_ (index, search_radius_, indices, sqr_distances));
643  }
644 
645  /** \brief Smooth a given point and its neighborghood using Moving Least Squares.
646  * \param[in] index the index of the query point in the input cloud
647  * \param[in] nn_indices the set of nearest neighbors indices for pt
648  * \param[out] projected_points the set of projected points around the query point
649  * (in the case of upsampling method NONE, only the query point projected to its own fitted surface will be returned,
650  * in the case of the other upsampling methods, multiple points will be returned)
651  * \param[out] projected_points_normals the normals corresponding to the projected points
652  * \param[out] corresponding_input_indices the set of indices with each point in output having the corresponding point in input
653  * \param[out] mls_result stores the MLS result for each point in the input cloud
654  * (used only in the case of VOXEL_GRID_DILATION or DISTINCT_CLOUD upsampling)
655  */
656  void
658  const pcl::Indices &nn_indices,
659  PointCloudOut &projected_points,
660  NormalCloud &projected_points_normals,
661  PointIndices &corresponding_input_indices,
662  MLSResult &mls_result) const;
663 
664 
665  /** \brief This is a helper function for adding projected points
666  * \param[in] index the index of the query point in the input cloud
667  * \param[in] point the projected point to be added
668  * \param[in] normal the projected point's normal to be added
669  * \param[in] curvature the projected point's curvature
670  * \param[out] projected_points the set of projected points around the query point
671  * \param[out] projected_points_normals the normals corresponding to the projected points
672  * \param[out] corresponding_input_indices the set of indices with each point in output having the corresponding point in input
673  */
674  void
676  const Eigen::Vector3d &point,
677  const Eigen::Vector3d &normal,
678  double curvature,
679  PointCloudOut &projected_points,
680  NormalCloud &projected_points_normals,
681  PointIndices &corresponding_input_indices) const;
682 
683 
684  void
685  copyMissingFields (const PointInT &point_in,
686  PointOutT &point_out) const;
687 
688  /** \brief Abstract surface reconstruction method.
689  * \param[out] output the result of the reconstruction
690  */
691  void
692  performProcessing (PointCloudOut &output) override;
693 
694  /** \brief Perform upsampling for the distinct-cloud and voxel-grid methods
695  * \param[out] output the result of the reconstruction
696  */
697  void
699 
700  private:
701  /** \brief Random number generator algorithm. */
702  mutable std::mt19937 rng_;
703 
704  /** \brief Random number generator using an uniform distribution of floats
705  * \note Used only in the case of RANDOM_UNIFORM_DENSITY upsampling
706  */
707  std::unique_ptr<std::uniform_real_distribution<>> rng_uniform_distribution_;
708 
709  /** \brief Abstract class get name method. */
710  std::string
711  getClassName () const { return ("MovingLeastSquares"); }
712  };
713 }
714 
715 #ifdef PCL_NO_PRECOMPILE
716 #include <pcl/surface/impl/mls.hpp>
717 #endif
CloudSurfaceProcessing represents the base class for algorithms that takes a point cloud as input and...
Definition: processing.h:58
A minimalistic implementation of a voxel grid, necessary for the point cloud upsampling.
Definition: mls.h:568
void getPosition(const std::uint64_t &index_1d, Eigen::Vector3f &point) const
Definition: mls.h:605
Eigen::Vector4f bounding_min_
Definition: mls.h:615
void getIndexIn1D(const Eigen::Vector3i &index, std::uint64_t &index_1d) const
Definition: mls.h:581
Eigen::Vector4f bounding_max_
Definition: mls.h:615
void getCellIndex(const Eigen::Vector3f &p, Eigen::Vector3i &index) const
Definition: mls.h:598
void getIndexIn3D(std::uint64_t index_1d, Eigen::Vector3i &index_3d) const
Definition: mls.h:588
MLSVoxelGrid(PointCloudInConstPtr &cloud, IndicesPtr &indices, float voxel_size, int dilation_iteration_num)
Definition: mls.hpp:805
std::map< std::uint64_t, Leaf > HashMap
Definition: mls.h:613
MovingLeastSquares represent an implementation of the MLS (Moving Least Squares) algorithm for data s...
Definition: mls.h:254
void setSqrGaussParam(double sqr_gauss_param)
Set the parameter used for distance based weighting of neighbors (the square of the search radius wor...
Definition: mls.h:362
void setDilationIterations(int iterations)
Set the number of dilation steps of the voxel grid.
Definition: mls.h:444
bool getCacheMLSResults() const
Get the cache_mls_results_ value (True if the mls results should be stored, otherwise false).
Definition: mls.h:462
double getSqrGaussParam() const
Get the parameter for distance based weighting of neighbors.
Definition: mls.h:366
unsigned int threads_
The maximum number of threads the scheduler should use.
Definition: mls.h:561
void performUpsampling(PointCloudOut &output)
Perform upsampling for the distinct-cloud and voxel-grid methods.
Definition: mls.hpp:369
typename PointCloudIn::Ptr PointCloudInPtr
Definition: mls.h:275
int order_
The order of the polynomial to be fit.
Definition: mls.h:518
double getSearchRadius() const
Get the sphere radius used for determining the k-nearest neighbors.
Definition: mls.h:355
typename KdTree::Ptr KdTreePtr
Definition: mls.h:266
MLSResult::ProjectionMethod projection_method_
Parameter that specifies the projection method to be used.
Definition: mls.h:558
typename PointCloudOut::Ptr PointCloudOutPtr
Definition: mls.h:271
KdTreePtr getSearchMethod() const
Get a pointer to the search method used.
Definition: mls.h:333
void setPolynomialOrder(int order)
Set the order of the polynomial to be fit.
Definition: mls.h:340
int getPolynomialOrder() const
Get the order of the polynomial to be fit.
Definition: mls.h:344
double getUpsamplingRadius() const
Get the radius of the circle in the local point plane that will be sampled.
Definition: mls.h:394
double search_radius_
The nearest neighbors search radius for each point.
Definition: mls.h:521
MovingLeastSquares()
Empty constructor.
Definition: mls.h:298
pcl::PointCloud< PointOutT > PointCloudOut
Definition: mls.h:270
double sqr_gauss_param_
Parameter for distance based weighting of neighbors (search_radius_ * search_radius_ works fine)
Definition: mls.h:524
typename PointCloudIn::ConstPtr PointCloudInConstPtr
Definition: mls.h:276
int getPointDensity() const
Get the parameter that specifies the desired number of points within the search radius.
Definition: mls.h:423
std::function< int(pcl::index_t, double, pcl::Indices &, std::vector< float > &)> SearchMethod
Definition: mls.h:278
float getDilationVoxelSize() const
Get the voxel size for the voxel grid.
Definition: mls.h:437
KdTreePtr tree_
A pointer to the spatial search object.
Definition: mls.h:515
void copyMissingFields(const PointInT &point_in, PointOutT &point_out) const
Definition: mls.hpp:863
void setComputeNormals(bool compute_normals)
Set whether the algorithm should also store the normals computed.
Definition: mls.h:315
void setPointDensity(int desired_num_points_in_radius)
Set the parameter that specifies the desired number of points within the search radius.
Definition: mls.h:416
MLSResult::ProjectionMethod getProjectionMethod() const
Get the current projection method being used.
Definition: mls.h:474
shared_ptr< MovingLeastSquares< PointInT, PointOutT > > Ptr
Definition: mls.h:256
double getUpsamplingStepSize() const
Get the step size for the local plane sampling.
Definition: mls.h:408
int getDilationIterations() const
Get the number of dilation steps of the voxel grid.
Definition: mls.h:450
double upsampling_step_
Step size for the local plane sampling.
Definition: mls.h:540
NormalCloud::Ptr NormalCloudPtr
Definition: mls.h:268
void setUpsamplingRadius(double radius)
Set the radius of the circle in the local point plane that will be sampled.
Definition: mls.h:388
NormalCloudPtr normals_
The point cloud that will hold the estimated normals, if set.
Definition: mls.h:506
void setDistinctCloud(PointCloudInConstPtr distinct_cloud)
Set the distinct cloud used for the DISTINCT_CLOUD upsampling method.
Definition: mls.h:376
void setDilationVoxelSize(float voxel_size)
Set the voxel size for the voxel grid.
Definition: mls.h:430
UpsamplingMethod upsample_method_
Parameter that specifies the upsampling method to be used.
Definition: mls.h:530
int searchForNeighbors(pcl::index_t index, pcl::Indices &indices, std::vector< float > &sqr_distances) const
Search for the nearest neighbors of a given point using a radius search.
Definition: mls.h:640
double upsampling_radius_
Radius of the circle in the local point plane that will be sampled.
Definition: mls.h:535
@ RANDOM_UNIFORM_DENSITY
The local plane of each input point will be sampled using an uniform random distribution such that th...
Definition: mls.h:287
@ SAMPLE_LOCAL_PLANE
The local plane of each input point will be sampled in a circular fashion using the upsampling_radius...
Definition: mls.h:285
@ VOXEL_GRID_DILATION
The input cloud will be inserted into a voxel grid with voxels of size voxel_size_; this voxel grid w...
Definition: mls.h:290
@ NONE
No upsampling will be done, only the input points will be projected to their own MLS surfaces.
Definition: mls.h:282
@ DISTINCT_CLOUD
Project the points of the distinct cloud to the MLS surface.
Definition: mls.h:284
PointCloudInConstPtr getDistinctCloud() const
Get the distinct cloud used for the DISTINCT_CLOUD upsampling method.
Definition: mls.h:380
void setSearchMethod(const KdTreePtr &tree)
Provide a pointer to the search object.
Definition: mls.h:321
int desired_num_points_in_radius_
Parameter that specifies the desired number of points within the search radius.
Definition: mls.h:545
pcl::PointCloud< pcl::Normal > NormalCloud
Definition: mls.h:267
const std::vector< MLSResult > & getMLSResults() const
Get the MLSResults for input cloud.
Definition: mls.h:481
void setUpsamplingMethod(UpsamplingMethod method)
Set the upsampling method to be used.
Definition: mls.h:372
void setUpsamplingStepSize(double step_size)
Set the step size for the local plane sampling.
Definition: mls.h:401
PointIndicesPtr corresponding_input_indices_
Collects for each point in output the corresponding point in the input.
Definition: mls.h:632
void setCacheMLSResults(bool cache_mls_results)
Set whether the mls results should be stored for each point in the input cloud.
Definition: mls.h:458
int nr_coeff_
Number of coefficients, to be computed from the requested order.
Definition: mls.h:629
void setNumberOfThreads(unsigned int threads=1)
Set the maximum number of threads to use.
Definition: mls.h:487
bool compute_normals_
Parameter that specifies whether the normals should be computed for the input cloud or not.
Definition: mls.h:527
void performProcessing(PointCloudOut &output) override
Abstract surface reconstruction method.
Definition: mls.hpp:283
void computeMLSPointNormal(pcl::index_t index, const pcl::Indices &nn_indices, PointCloudOut &projected_points, NormalCloud &projected_points_normals, PointIndices &corresponding_input_indices, MLSResult &mls_result) const
Smooth a given point and its neighborghood using Moving Least Squares.
Definition: mls.hpp:173
shared_ptr< const MovingLeastSquares< PointInT, PointOutT > > ConstPtr
Definition: mls.h:257
SearchMethod search_method_
The search method template for indices.
Definition: mls.h:512
void process(PointCloudOut &output) override
Base method for surface reconstruction for all points given in <setInputCloud (), setIndices ()>
Definition: mls.hpp:62
void addProjectedPointNormal(pcl::index_t index, const Eigen::Vector3d &point, const Eigen::Vector3d &normal, double curvature, PointCloudOut &projected_points, NormalCloud &projected_points_normals, PointIndices &corresponding_input_indices) const
This is a helper function for adding projected points.
Definition: mls.hpp:251
PointIndicesPtr getCorrespondingIndices() const
Get the set of indices with each point in output having the corresponding point in input.
Definition: mls.h:502
void setSearchRadius(double radius)
Set the sphere radius that is to be used for determining the k-nearest neighbors used for fitting.
Definition: mls.h:351
typename PointCloudOut::ConstPtr PointCloudOutConstPtr
Definition: mls.h:272
int dilation_iteration_num_
Number of dilation steps for the VOXEL_GRID_DILATION upsampling method.
Definition: mls.h:626
void setProjectionMethod(MLSResult::ProjectionMethod method)
Set the method to be used when projection the point on to the MLS surface.
Definition: mls.h:469
bool cache_mls_results_
True if the mls results for the input cloud should be stored.
Definition: mls.h:550
~MovingLeastSquares() override=default
Empty destructor.
std::vector< MLSResult > mls_results_
Stores the MLS result for each point in the input cloud.
Definition: mls.h:555
float voxel_size_
Voxel size for the VOXEL_GRID_DILATION upsampling method.
Definition: mls.h:623
PointCloudInConstPtr distinct_cloud_
The distinct point cloud that will be projected to the MLS surface.
Definition: mls.h:509
PCL base class.
Definition: pcl_base.h:70
PointIndices::Ptr PointIndicesPtr
Definition: pcl_base.h:76
PointCloud represents the base class in PCL for storing collections of 3D points.
Definition: point_cloud.h:174
shared_ptr< PointCloud< pcl::Normal > > Ptr
Definition: point_cloud.h:414
shared_ptr< const PointCloud< PointOutT > > ConstPtr
Definition: point_cloud.h:415
shared_ptr< pcl::search::Search< PointInT > > Ptr
Definition: search.h:81
Defines all the PCL implemented PointT point type structures.
#define PCL_MAKE_ALIGNED_OPERATOR_NEW
Macro to signal a class requires a custom allocator.
Definition: memory.h:86
Defines functions, macros and traits for allocating and using memory.
detail::int_type_t< detail::index_type_size, detail::index_type_signed > index_t
Type used for an index in PCL.
Definition: types.h:112
IndicesAllocator<> Indices
Type used for indices in PCL.
Definition: types.h:133
PointIndices::Ptr PointIndicesPtr
Definition: PointIndices.h:23
shared_ptr< Indices > IndicesPtr
Definition: pcl_base.h:58
Defines all the PCL and non-PCL macros used.
Data structure used to store the MLS projection results.
Definition: mls.h:82
Eigen::Vector3d point
The projected point.
Definition: mls.h:87
double v
The v-coordinate of the projected point in local MLS frame.
Definition: mls.h:86
Eigen::Vector3d normal
The projected point's normal.
Definition: mls.h:88
double u
The u-coordinate of the projected point in local MLS frame.
Definition: mls.h:85
Data structure used to store the MLS polynomial partial derivatives.
Definition: mls.h:71
double z_uv
The partial derivative d^2z/dudv.
Definition: mls.h:77
double z_u
The partial derivative dz/du.
Definition: mls.h:73
double z_uu
The partial derivative d^2z/du^2.
Definition: mls.h:75
double z
The z component of the polynomial evaluated at z(u, v).
Definition: mls.h:72
double z_vv
The partial derivative d^2z/dv^2.
Definition: mls.h:76
double z_v
The partial derivative dz/dv.
Definition: mls.h:74
Data structure used to store the results of the MLS fitting.
Definition: mls.h:61
MLSProjectionResults projectPoint(const Eigen::Vector3d &pt, ProjectionMethod method, int required_neighbors=0) const
Project a point using the specified method.
Definition: mls.hpp:636
MLSResult()
Definition: mls.h:93
Eigen::Vector3d mean
The mean point of all the neighbors.
Definition: mls.h:217
MLSProjectionResults projectPointOrthogonalToPolynomialSurface(const double u, const double v, const double w) const
Project a point orthogonal to the polynomial surface.
Definition: mls.hpp:536
Eigen::Vector3d u_axis
The axis corresponding to the u-coordinates of the local plane of the query point.
Definition: mls.h:219
Eigen::Vector3d plane_normal
The normal of the local plane of the query point.
Definition: mls.h:218
ProjectionMethod
Definition: mls.h:63
@ ORTHOGONAL
Project to the closest point on the polynonomial surface.
Definition: mls.h:66
@ SIMPLE
Project along the mls plane normal to the polynomial surface.
Definition: mls.h:65
@ NONE
Project to the mls plane.
Definition: mls.h:64
Eigen::Vector3d v_axis
The axis corresponding to the v-coordinates of the local plane of the query point.
Definition: mls.h:220
int num_neighbors
The number of neighbors used to create the mls surface.
Definition: mls.h:222
Eigen::VectorXd c_vec
The polynomial coefficients Example: z = c_vec[0] + c_vec[1]*v + c_vec[2]*v^2 + c_vec[3]*u + c_vec[4]...
Definition: mls.h:221
void computeMLSSurface(const pcl::PointCloud< PointT > &cloud, pcl::index_t index, const pcl::Indices &nn_indices, double search_radius, int polynomial_order=2, std::function< double(const double)> weight_func={})
Smooth a given point and its neighborhood using Moving Least Squares.
Definition: mls.hpp:689
void getMLSCoordinates(const Eigen::Vector3d &pt, double &u, double &v, double &w) const
Given a point calculate its 3D location in the MLS frame.
Definition: mls.hpp:452
float curvature
The curvature at the query point.
Definition: mls.h:223
PolynomialPartialDerivative getPolynomialPartialDerivative(const double u, const double v) const
Calculate the polynomial's first and second partial derivatives.
Definition: mls.hpp:491
MLSProjectionResults projectPointSimpleToPolynomialSurface(const double u, const double v) const
Project a point along the MLS plane normal to the polynomial surface.
Definition: mls.hpp:613
MLSProjectionResults projectPointToMLSPlane(const double u, const double v) const
Project a point onto the MLS plane.
Definition: mls.hpp:601
Eigen::Vector2f calculatePrincipalCurvatures(const double u, const double v) const
Calculate the principal curvatures using the polynomial surface.
double getPolynomialValue(const double u, const double v) const
Calculate the polynomial.
Definition: mls.hpp:469
Eigen::Vector3d query_point
The query point about which the mls surface was generated.
Definition: mls.h:216
MLSProjectionResults projectQueryPoint(ProjectionMethod method, int required_neighbors=0) const
Project the query point used to generate the mls surface about using the specified method.
Definition: mls.hpp:658
int order
The order of the polynomial.
Definition: mls.h:224
bool valid
If True, the mls results data is valid, otherwise False.
Definition: mls.h:225