|
using | Ptr = shared_ptr< PFHEstimation< PointInT, PointNT, PointOutT > > |
|
using | ConstPtr = shared_ptr< const PFHEstimation< PointInT, PointNT, PointOutT > > |
|
using | PointCloudOut = typename Feature< PointInT, PointOutT >::PointCloudOut |
|
using | PointCloudIn = typename Feature< PointInT, PointOutT >::PointCloudIn |
|
using | PointCloudN = pcl::PointCloud< PointNT > |
|
using | PointCloudNPtr = typename PointCloudN::Ptr |
|
using | PointCloudNConstPtr = typename PointCloudN::ConstPtr |
|
using | Ptr = shared_ptr< FeatureFromNormals< PointInT, PointNT, pcl::PFHSignature125 > > |
|
using | ConstPtr = shared_ptr< const FeatureFromNormals< PointInT, PointNT, pcl::PFHSignature125 > > |
|
using | BaseClass = PCLBase< PointInT > |
|
using | Ptr = shared_ptr< Feature< PointInT, PointOutT > > |
|
using | ConstPtr = shared_ptr< const Feature< PointInT, PointOutT > > |
|
using | KdTree = pcl::search::Search< PointInT > |
|
using | KdTreePtr = typename KdTree::Ptr |
|
using | PointCloudIn = pcl::PointCloud< PointInT > |
|
using | PointCloudInPtr = typename PointCloudIn::Ptr |
|
using | PointCloudInConstPtr = typename PointCloudIn::ConstPtr |
|
using | PointCloudOut = pcl::PointCloud< PointOutT > |
|
using | SearchMethod = std::function< int(std::size_t, double, pcl::Indices &, std::vector< float > &)> |
|
using | SearchMethodSurface = std::function< int(const PointCloudIn &cloud, std::size_t index, double, pcl::Indices &, std::vector< float > &)> |
|
using | PointCloud = pcl::PointCloud< PointInT > |
|
using | PointCloudPtr = typename PointCloud::Ptr |
|
using | PointCloudConstPtr = typename PointCloud::ConstPtr |
|
using | PointIndicesPtr = PointIndices::Ptr |
|
using | PointIndicesConstPtr = PointIndices::ConstPtr |
|
|
| PFHEstimation () |
| Empty constructor. More...
|
|
void | setMaximumCacheSize (unsigned int cache_size) |
| Set the maximum internal cache size. More...
|
|
unsigned int | getMaximumCacheSize () |
| Get the maximum internal cache size. More...
|
|
void | setUseInternalCache (bool use_cache) |
| Set whether to use an internal cache mechanism for removing redundant calculations or not. More...
|
|
bool | getUseInternalCache () |
| Get whether the internal cache is used or not for computing the PFH features. More...
|
|
bool | computePairFeatures (const pcl::PointCloud< PointInT > &cloud, const pcl::PointCloud< PointNT > &normals, int p_idx, int q_idx, float &f1, float &f2, float &f3, float &f4) |
| Compute the 4-tuple representation containing the three angles and one distance between two points represented by Cartesian coordinates and normals. More...
|
|
void | computePointPFHSignature (const pcl::PointCloud< PointInT > &cloud, const pcl::PointCloud< PointNT > &normals, const pcl::Indices &indices, int nr_split, Eigen::VectorXf &pfh_histogram) |
| Estimate the PFH (Point Feature Histograms) individual signatures of the three angular (f1, f2, f3) features for a given point based on its spatial neighborhood of 3D points with normals. More...
|
|
| FeatureFromNormals () |
| Empty constructor. More...
|
|
void | setInputNormals (const PointCloudNConstPtr &normals) |
| Provide a pointer to the input dataset that contains the point normals of the XYZ dataset. More...
|
|
PointCloudNConstPtr | getInputNormals () const |
| Get a pointer to the normals of the input XYZ point cloud dataset. More...
|
|
| Feature () |
| Empty constructor. More...
|
|
void | setSearchSurface (const PointCloudInConstPtr &cloud) |
| Provide a pointer to a dataset to add additional information to estimate the features for every point in the input dataset. More...
|
|
PointCloudInConstPtr | getSearchSurface () const |
| Get a pointer to the surface point cloud dataset. More...
|
|
void | setSearchMethod (const KdTreePtr &tree) |
| Provide a pointer to the search object. More...
|
|
KdTreePtr | getSearchMethod () const |
| Get a pointer to the search method used. More...
|
|
double | getSearchParameter () const |
| Get the internal search parameter. More...
|
|
void | setKSearch (int k) |
| Set the number of k nearest neighbors to use for the feature estimation. More...
|
|
int | getKSearch () const |
| get the number of k nearest neighbors used for the feature estimation. More...
|
|
void | setRadiusSearch (double radius) |
| Set the sphere radius that is to be used for determining the nearest neighbors used for the feature estimation. More...
|
|
double | getRadiusSearch () const |
| Get the sphere radius used for determining the neighbors. More...
|
|
void | compute (PointCloudOut &output) |
| Base method for feature estimation for all points given in <setInputCloud (), setIndices ()> using the surface in setSearchSurface () and the spatial locator in setSearchMethod () More...
|
|
| PCLBase () |
| Empty constructor. More...
|
|
| PCLBase (const PCLBase &base) |
| Copy constructor. More...
|
|
virtual | ~PCLBase ()=default |
| Destructor. More...
|
|
virtual void | setInputCloud (const PointCloudConstPtr &cloud) |
| Provide a pointer to the input dataset. More...
|
|
PointCloudConstPtr const | getInputCloud () const |
| Get a pointer to the input point cloud dataset. More...
|
|
virtual void | setIndices (const IndicesPtr &indices) |
| Provide a pointer to the vector of indices that represents the input data. More...
|
|
virtual void | setIndices (const IndicesConstPtr &indices) |
| Provide a pointer to the vector of indices that represents the input data. More...
|
|
virtual void | setIndices (const PointIndicesConstPtr &indices) |
| Provide a pointer to the vector of indices that represents the input data. More...
|
|
virtual void | setIndices (std::size_t row_start, std::size_t col_start, std::size_t nb_rows, std::size_t nb_cols) |
| Set the indices for the points laying within an interest region of the point cloud. More...
|
|
IndicesPtr | getIndices () |
| Get a pointer to the vector of indices used. More...
|
|
IndicesConstPtr const | getIndices () const |
| Get a pointer to the vector of indices used. More...
|
|
const PointInT & | operator[] (std::size_t pos) const |
| Override PointCloud operator[] to shorten code. More...
|
|
|
void | computeFeature (PointCloudOut &output) override |
| Estimate the Point Feature Histograms (PFH) descriptors at a set of points given by <setInputCloud (), setIndices ()> using the surface in setSearchSurface () and the spatial locator in setSearchMethod () More...
|
|
virtual bool | initCompute () |
| This method should get called before starting the actual computation. More...
|
|
const std::string & | getClassName () const |
| Get a string representation of the name of this class. More...
|
|
virtual bool | deinitCompute () |
| This method should get called after ending the actual computation. More...
|
|
int | searchForNeighbors (std::size_t index, double parameter, pcl::Indices &indices, std::vector< float > &distances) const |
| Search for k-nearest neighbors using the spatial locator from setSearchmethod, and the given surface from setSearchSurface. More...
|
|
int | searchForNeighbors (const PointCloudIn &cloud, std::size_t index, double parameter, pcl::Indices &indices, std::vector< float > &distances) const |
| Search for k-nearest neighbors using the spatial locator from setSearchmethod, and the given surface from setSearchSurface. More...
|
|
bool | initCompute () |
| This method should get called before starting the actual computation. More...
|
|
bool | deinitCompute () |
| This method should get called after finishing the actual computation. More...
|
|
|
int | nr_subdiv_ {5} |
| The number of subdivisions for each angular feature interval. More...
|
|
Eigen::VectorXf | pfh_histogram_ |
| Placeholder for a point's PFH signature. More...
|
|
Eigen::Vector4f | pfh_tuple_ |
| Placeholder for a PFH 4-tuple. More...
|
|
int | f_index_ [3] |
| Placeholder for a histogram index. More...
|
|
float | d_pi_ |
| Float constant = 1.0 / (2.0 * M_PI) More...
|
|
std::map< std::pair< int, int >, Eigen::Vector4f, std::less<>, Eigen::aligned_allocator< std::pair< const std::pair< int, int >, Eigen::Vector4f > > > | feature_map_ |
| Internal hashmap, used to optimize efficiency of redundant computations. More...
|
|
std::queue< std::pair< int, int > > | key_list_ |
| Queue of pairs saved, used to constrain memory usage. More...
|
|
unsigned int | max_cache_size_ |
| Maximum size of internal cache memory. More...
|
|
bool | use_cache_ {false} |
| Set to true to use the internal cache for removing redundant computations. More...
|
|
PointCloudNConstPtr | normals_ |
| A pointer to the input dataset that contains the point normals of the XYZ dataset. More...
|
|
std::string | feature_name_ |
| The feature name. More...
|
|
SearchMethodSurface | search_method_surface_ |
| The search method template for points. More...
|
|
PointCloudInConstPtr | surface_ |
| An input point cloud describing the surface that is to be used for nearest neighbors estimation. More...
|
|
KdTreePtr | tree_ |
| A pointer to the spatial search object. More...
|
|
double | search_parameter_ |
| The actual search parameter (from either search_radius_ or k_). More...
|
|
double | search_radius_ |
| The nearest neighbors search radius for each point. More...
|
|
int | k_ |
| The number of K nearest neighbors to use for each point. More...
|
|
bool | fake_surface_ |
| If no surface is given, we use the input PointCloud as the surface. More...
|
|
PointCloudConstPtr | input_ |
| The input point cloud dataset. More...
|
|
IndicesPtr | indices_ |
| A pointer to the vector of point indices to use. More...
|
|
bool | use_indices_ |
| Set to true if point indices are used. More...
|
|
bool | fake_indices_ |
| If no set of indices are given, we construct a set of fake indices that mimic the input PointCloud. More...
|
|
template<typename PointInT, typename PointNT, typename PointOutT = pcl::PFHSignature125>
class pcl::PFHEstimation< PointInT, PointNT, PointOutT >
PFHEstimation estimates the Point Feature Histogram (PFH) descriptor for a given point cloud dataset containing points and normals.
A commonly used type for PointOutT is pcl::PFHSignature125.
- Note
- If you use this code in any academic work, please cite:
- R.B. Rusu, N. Blodow, Z.C. Marton, M. Beetz. Aligning Point Cloud Views using Persistent Feature Histograms. In Proceedings of the 21st IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Nice, France, September 22-26 2008.
- R.B. Rusu, Z.C. Marton, N. Blodow, M. Beetz. Learning Informative Point Classes for the Acquisition of Object Model Maps. In Proceedings of the 10th International Conference on Control, Automation, Robotics and Vision (ICARCV), Hanoi, Vietnam, December 17-20 2008.
- Attention
- The convention for PFH features is:
- if a query point's nearest neighbors cannot be estimated, the PFH feature will be set to NaN (not a number)
- it is impossible to estimate a PFH descriptor for a point that doesn't have finite 3D coordinates. Therefore, any point that contains NaN data on x, y, or z, will have its PFH feature property set to NaN.
- Note
- The code is stateful as we do not expect this class to be multicore parallelized. Please look at FPFHEstimationOMP for examples on parallel implementations of the FPFH (Fast Point Feature Histogram).
- Author
- Radu B. Rusu
Definition at line 81 of file pfh.h.
template<typename PointInT , typename PointNT , typename PointOutT >
template<typename PointInT , typename PointNT , typename PointOutT >
Estimate the PFH (Point Feature Histograms) individual signatures of the three angular (f1, f2, f3) features for a given point based on its spatial neighborhood of 3D points with normals.
- Parameters
-
[in] | cloud | the dataset containing the XYZ Cartesian coordinates of the two points |
[in] | normals | the dataset containing the surface normals at each point in cloud |
[in] | indices | the k-neighborhood point indices in the dataset |
[in] | nr_split | the number of subdivisions for each angular feature interval |
[out] | pfh_histogram | the resultant (combinatorial) PFH histogram representing the feature at the query point |
Definition at line 61 of file pfh.hpp.
References pcl::computePairFeatures(), pcl::isFinite(), and M_PI.
template<typename PointInT , typename PointNT , typename PointOutT = pcl::PFHSignature125>
void pcl::PFHEstimation< PointInT, PointNT, PointOutT >::setUseInternalCache |
( |
bool |
use_cache | ) |
|
|
inline |
Set whether to use an internal cache mechanism for removing redundant calculations or not.
- Note
- Depending on how the point cloud is ordered and how the nearest neighbors are estimated, using a cache could have a positive or a negative influence. Please test with and without a cache on your data, and choose whatever works best!
See setMaximumCacheSize for setting the maximum cache size
- Parameters
-
[in] | use_cache | set to true to use the internal cache, false otherwise |
Definition at line 139 of file pfh.h.
References pcl::PFHEstimation< PointInT, PointNT, PointOutT >::use_cache_.