41 #include <pcl/registration/correspondence_rejection.h>
42 #include <pcl/point_cloud.h>
45 namespace registration {
62 template <
typename SourceT,
typename TargetT>
69 using Ptr = shared_ptr<CorrespondenceRejectorPoly<SourceT, TargetT>>;
70 using ConstPtr = shared_ptr<const CorrespondenceRejectorPoly<SourceT, TargetT>>;
126 setInputSource(cloud);
142 setInputTarget(cloud);
151 cardinality_ = cardinality;
160 return (cardinality_);
170 similarity_threshold_ = similarity_threshold;
171 similarity_threshold_squared_ = similarity_threshold * similarity_threshold;
180 return (similarity_threshold_);
189 iterations_ = iterations;
198 return (iterations_);
213 return (thresholdEdgeLength(corr[idx[0]].index_query,
214 corr[idx[1]].index_query,
215 corr[idx[0]].index_match,
216 corr[idx[1]].index_match,
217 similarity_threshold_squared_));
220 for (
int i = 0; i < cardinality_; ++i) {
221 if (!thresholdEdgeLength(corr[idx[i]].index_query,
222 corr[idx[(i + 1) % cardinality_]].index_query,
223 corr[idx[i]].index_match,
224 corr[idx[(i + 1) % cardinality_]].index_match,
225 similarity_threshold_squared_)) {
246 std::vector<int> idx(cardinality_);
247 for (
int i = 0; i < cardinality_; ++i) {
248 corr[i].index_query = source_indices[i];
249 corr[i].index_match = target_indices[i];
253 return (thresholdPolygon(corr, idx));
263 getRemainingCorrespondences(*input_correspondences_, correspondences);
272 inline std::vector<int>
276 std::vector<bool> sampled(n,
false);
279 std::vector<int> result;
283 const int idx = (std::rand() % n);
290 result.push_back(idx);
292 }
while (samples < k);
305 const float dx = p2.x - p1.x;
306 const float dy = p2.y - p1.y;
307 const float dz = p2.z - p1.z;
309 return (dx * dx + dy * dy + dz * dz);
328 const float dist_src =
329 computeSquaredDistance((*input_)[index_query_1], (*input_)[index_query_2]);
331 const float dist_tgt =
332 computeSquaredDistance((*target_)[index_match_1], (*target_)[index_match_2]);
334 const float edge_sim =
335 (dist_src < dist_tgt ? dist_src / dist_tgt : dist_tgt / dist_src);
337 return (edge_sim >= simsq);
350 computeHistogram(
const std::vector<float>& data,
float lower,
float upper,
int bins);
358 findThresholdOtsu(
const std::vector<int>& histogram);
367 int iterations_{10000};
374 float similarity_threshold_{0.75f};
377 float similarity_threshold_squared_{0.75f * 0.75f};
382 #include <pcl/registration/impl/correspondence_rejection_poly.hpp>
PointCloud represents the base class in PCL for storing collections of 3D points.
shared_ptr< PointCloud< PointT > > Ptr
shared_ptr< const PointCloud< PointT > > ConstPtr
CorrespondenceRejector represents the base class for correspondence rejection methods
shared_ptr< const CorrespondenceRejector > ConstPtr
CorrespondencesConstPtr input_correspondences_
The input correspondences.
const std::string & getClassName() const
Get a string representation of the name of this class.
shared_ptr< CorrespondenceRejector > Ptr
std::string rejection_name_
The name of the rejection method.
CorrespondenceRejectorPoly implements a correspondence rejection method that exploits low-level and p...
bool thresholdPolygon(const pcl::Correspondences &corr, const std::vector< int > &idx)
Polygonal rejection of a single polygon, indexed by a subset of correspondences.
typename PointCloudSource::Ptr PointCloudSourcePtr
float computeSquaredDistance(const SourceT &p1, const TargetT &p2)
Squared Euclidean distance between two points using the members x, y and z.
int getIterations()
Get the number of iterations.
typename PointCloudTarget::ConstPtr PointCloudTargetConstPtr
PointCloudSourceConstPtr input_
The input point cloud dataset.
float getSimilarityThreshold()
Get the similarity threshold between edge lengths.
void setTargetPoints(pcl::PCLPointCloud2::ConstPtr cloud2) override
Method for setting the target cloud.
bool thresholdPolygon(const pcl::Indices &source_indices, const pcl::Indices &target_indices)
Polygonal rejection of a single polygon, indexed by two point index vectors.
void applyRejection(pcl::Correspondences &correspondences) override
Apply the rejection algorithm.
void setCardinality(int cardinality)
Set the polygon cardinality.
void setSimilarityThreshold(float similarity_threshold)
Set the similarity threshold in [0,1[ between edge lengths, where 1 is a perfect match.
void setIterations(int iterations)
Set the number of iterations.
bool thresholdEdgeLength(int index_query_1, int index_query_2, int index_match_1, int index_match_2, float simsq)
Edge length similarity thresholding.
CorrespondenceRejectorPoly()
Empty constructor.
typename PointCloudTarget::Ptr PointCloudTargetPtr
PointCloudTargetConstPtr target_
The input point cloud dataset target.
void setInputTarget(const PointCloudTargetConstPtr &target)
Provide a target point cloud dataset (must contain XYZ data!), used to compute the correspondence dis...
void setSourcePoints(pcl::PCLPointCloud2::ConstPtr cloud2) override
Blob method for setting the source cloud.
void setInputSource(const PointCloudSourceConstPtr &cloud)
Provide a source point cloud dataset (must contain XYZ data!), used to compute the correspondence dis...
bool requiresTargetPoints() const override
See if this rejector requires a target cloud.
std::vector< int > getUniqueRandomIndices(int n, int k)
Get k unique random indices in range {0,...,n-1} (sampling without replacement)
bool requiresSourcePoints() const override
See if this rejector requires source points.
int getCardinality()
Get the polygon cardinality.
typename PointCloudSource::ConstPtr PointCloudSourceConstPtr
void fromPCLPointCloud2(const pcl::PCLPointCloud2 &msg, pcl::PointCloud< PointT > &cloud, const MsgFieldMap &field_map, const std::uint8_t *msg_data)
Convert a PCLPointCloud2 binary data blob into a pcl::PointCloud<T> object using a field_map.
std::vector< pcl::Correspondence, Eigen::aligned_allocator< pcl::Correspondence > > Correspondences
IndicesAllocator<> Indices
Type used for indices in PCL.
shared_ptr< const ::pcl::PCLPointCloud2 > ConstPtr