Point Cloud Library (PCL)  1.14.1-dev
List of all members | Public Member Functions | Protected Member Functions | Protected Attributes
pcl::registration::KFPCSInitialAlignment< PointSource, PointTarget, NormalT, Scalar > Class Template Reference

KFPCSInitialAlignment computes corresponding four point congruent sets based on keypoints as described in: "Markerless point cloud registration with keypoint-based 4-points congruent sets", Pascal Theiler, Jan Dirk Wegner, Konrad Schindler. More...

#include <pcl/registration/ia_kfpcs.h>

+ Inheritance diagram for pcl::registration::KFPCSInitialAlignment< PointSource, PointTarget, NormalT, Scalar >:
+ Collaboration diagram for pcl::registration::KFPCSInitialAlignment< PointSource, PointTarget, NormalT, Scalar >:

Public Member Functions

 KFPCSInitialAlignment ()
 Constructor. More...
 
 ~KFPCSInitialAlignment () override=default
 Destructor. More...
 
void setUpperTranslationThreshold (float upper_trl_boundary)
 Set the upper translation threshold used for score evaluation. More...
 
float getUpperTranslationThreshold () const
 
void setLowerTranslationThreshold (float lower_trl_boundary)
 Set the lower translation threshold used for score evaluation. More...
 
float getLowerTranslationThreshold () const
 
void setLambda (float lambda)
 Set the weighting factor of the translation cost term. More...
 
float getLambda () const
 
void getNBestCandidates (int n, float min_angle3d, float min_translation3d, MatchingCandidates &candidates)
 Get the N best unique candidate matches according to their fitness score. More...
 
void getTBestCandidates (float t, float min_angle3d, float min_translation3d, MatchingCandidates &candidates)
 Get all unique candidate matches with fitness scores above a threshold t. More...
 
- Public Member Functions inherited from pcl::registration::FPCSInitialAlignment< PointSource, PointTarget, pcl::Normal, float >
 FPCSInitialAlignment ()
 Constructor. More...
 
 ~FPCSInitialAlignment () override=default
 Destructor. More...
 
void setTargetIndices (const IndicesPtr &target_indices)
 Provide a pointer to the vector of target indices. More...
 
IndicesPtr getTargetIndices () const
 
void setSourceNormals (const NormalsConstPtr &source_normals)
 Provide a pointer to the normals of the source point cloud. More...
 
NormalsConstPtr getSourceNormals () const
 
void setTargetNormals (const NormalsConstPtr &target_normals)
 Provide a pointer to the normals of the target point cloud. More...
 
NormalsConstPtr getTargetNormals () const
 
void setNumberOfThreads (int nr_threads)
 Set the number of used threads if OpenMP is activated. More...
 
int getNumberOfThreads () const
 
void setDelta (float delta, bool normalize=false)
 Set the constant factor delta which weights the internally calculated parameters. More...
 
float getDelta () const
 
void setApproxOverlap (float approx_overlap)
 Set the approximate overlap between source and target. More...
 
float getApproxOverlap () const
 
void setScoreThreshold (float score_threshold)
 Set the scoring threshold used for early finishing the method. More...
 
float getScoreThreshold () const
 
void setNumberOfSamples (int nr_samples)
 Set the number of source samples to use during alignment. More...
 
int getNumberOfSamples () const
 
void setMaxNormalDifference (float max_norm_diff)
 Set the maximum normal difference between valid point correspondences in degree. More...
 
float getMaxNormalDifference () const
 
void setMaxComputationTime (int max_runtime)
 Set the maximum computation time in seconds. More...
 
int getMaxComputationTime () const
 
float getFitnessScore () const
 
- Public Member Functions inherited from pcl::Registration< PointSource, PointTarget, float >
 Registration ()
 Empty constructor. More...
 
 ~Registration () override=default
 destructor. More...
 
void setTransformationEstimation (const TransformationEstimationPtr &te)
 Provide a pointer to the transformation estimation object. More...
 
void setCorrespondenceEstimation (const CorrespondenceEstimationPtr &ce)
 Provide a pointer to the correspondence estimation object. More...
 
virtual void setInputSource (const PointCloudSourceConstPtr &cloud)
 Provide a pointer to the input source (e.g., the point cloud that we want to align to the target) More...
 
PointCloudSourceConstPtr const getInputSource ()
 Get a pointer to the input point cloud dataset target. More...
 
virtual void setInputTarget (const PointCloudTargetConstPtr &cloud)
 Provide a pointer to the input target (e.g., the point cloud that we want to align the input source to) More...
 
PointCloudTargetConstPtr const getInputTarget ()
 Get a pointer to the input point cloud dataset target. More...
 
void setSearchMethodTarget (const KdTreePtr &tree, bool force_no_recompute=false)
 Provide a pointer to the search object used to find correspondences in the target cloud. More...
 
KdTreePtr getSearchMethodTarget () const
 Get a pointer to the search method used to find correspondences in the target cloud. More...
 
void setSearchMethodSource (const KdTreeReciprocalPtr &tree, bool force_no_recompute=false)
 Provide a pointer to the search object used to find correspondences in the source cloud (usually used by reciprocal correspondence finding). More...
 
KdTreeReciprocalPtr getSearchMethodSource () const
 Get a pointer to the search method used to find correspondences in the source cloud. More...
 
Matrix4 getFinalTransformation ()
 Get the final transformation matrix estimated by the registration method. More...
 
Matrix4 getLastIncrementalTransformation ()
 Get the last incremental transformation matrix estimated by the registration method. More...
 
void setMaximumIterations (int nr_iterations)
 Set the maximum number of iterations the internal optimization should run for. More...
 
int getMaximumIterations ()
 Get the maximum number of iterations the internal optimization should run for, as set by the user. More...
 
void setRANSACIterations (int ransac_iterations)
 Set the number of iterations RANSAC should run for. More...
 
double getRANSACIterations ()
 Get the number of iterations RANSAC should run for, as set by the user. More...
 
void setRANSACOutlierRejectionThreshold (double inlier_threshold)
 Set the inlier distance threshold for the internal RANSAC outlier rejection loop. More...
 
double getRANSACOutlierRejectionThreshold ()
 Get the inlier distance threshold for the internal outlier rejection loop as set by the user. More...
 
void setMaxCorrespondenceDistance (double distance_threshold)
 Set the maximum distance threshold between two correspondent points in source <-> target. More...
 
double getMaxCorrespondenceDistance ()
 Get the maximum distance threshold between two correspondent points in source <-> target. More...
 
void setTransformationEpsilon (double epsilon)
 Set the transformation epsilon (maximum allowable translation squared difference between two consecutive transformations) in order for an optimization to be considered as having converged to the final solution. More...
 
double getTransformationEpsilon ()
 Get the transformation epsilon (maximum allowable translation squared difference between two consecutive transformations) as set by the user. More...
 
void setTransformationRotationEpsilon (double epsilon)
 Set the transformation rotation epsilon (maximum allowable rotation difference between two consecutive transformations) in order for an optimization to be considered as having converged to the final solution. More...
 
double getTransformationRotationEpsilon ()
 Get the transformation rotation epsilon (maximum allowable difference between two consecutive transformations) as set by the user (epsilon is the cos(angle) in a axis-angle representation). More...
 
void setEuclideanFitnessEpsilon (double epsilon)
 Set the maximum allowed Euclidean error between two consecutive steps in the ICP loop, before the algorithm is considered to have converged. More...
 
double getEuclideanFitnessEpsilon ()
 Get the maximum allowed distance error before the algorithm will be considered to have converged, as set by the user. More...
 
void setPointRepresentation (const PointRepresentationConstPtr &point_representation)
 Provide a boost shared pointer to the PointRepresentation to be used when comparing points. More...
 
bool registerVisualizationCallback (std::function< UpdateVisualizerCallbackSignature > &visualizerCallback)
 Register the user callback function which will be called from registration thread in order to update point cloud obtained after each iteration. More...
 
double getFitnessScore (double max_range=std::numeric_limits< double >::max())
 Obtain the Euclidean fitness score (e.g., mean of squared distances from the source to the target) More...
 
double getFitnessScore (const std::vector< float > &distances_a, const std::vector< float > &distances_b)
 Obtain the Euclidean fitness score (e.g., mean of squared distances from the source to the target) from two sets of correspondence distances (distances between source and target points) More...
 
bool hasConverged () const
 Return the state of convergence after the last align run. More...
 
void align (PointCloudSource &output)
 Call the registration algorithm which estimates the transformation and returns the transformed source (input) as output. More...
 
void align (PointCloudSource &output, const Matrix4 &guess)
 Call the registration algorithm which estimates the transformation and returns the transformed source (input) as output. More...
 
const std::string & getClassName () const
 Abstract class get name method. More...
 
bool initCompute ()
 Internal computation initialization. More...
 
bool initComputeReciprocal ()
 Internal computation when reciprocal lookup is needed. More...
 
void addCorrespondenceRejector (const CorrespondenceRejectorPtr &rejector)
 Add a new correspondence rejector to the list. More...
 
std::vector< CorrespondenceRejectorPtrgetCorrespondenceRejectors ()
 Get the list of correspondence rejectors. More...
 
bool removeCorrespondenceRejector (unsigned int i)
 Remove the i-th correspondence rejector in the list. More...
 
void clearCorrespondenceRejectors ()
 Clear the list of correspondence rejectors. More...
 
- Public Member Functions inherited from pcl::PCLBase< PointSource >
 PCLBase ()
 Empty constructor. More...
 
 PCLBase (const PCLBase &base)
 Copy constructor. More...
 
virtual ~PCLBase ()=default
 Destructor. More...
 
virtual void setInputCloud (const PointCloudConstPtr &cloud)
 Provide a pointer to the input dataset. More...
 
PointCloudConstPtr const getInputCloud () const
 Get a pointer to the input point cloud dataset. More...
 
virtual void setIndices (const IndicesPtr &indices)
 Provide a pointer to the vector of indices that represents the input data. More...
 
virtual void setIndices (const IndicesConstPtr &indices)
 Provide a pointer to the vector of indices that represents the input data. More...
 
virtual void setIndices (const PointIndicesConstPtr &indices)
 Provide a pointer to the vector of indices that represents the input data. More...
 
virtual void setIndices (std::size_t row_start, std::size_t col_start, std::size_t nb_rows, std::size_t nb_cols)
 Set the indices for the points laying within an interest region of the point cloud. More...
 
IndicesPtr getIndices ()
 Get a pointer to the vector of indices used. More...
 
IndicesConstPtr const getIndices () const
 Get a pointer to the vector of indices used. More...
 
const PointSource & operator[] (std::size_t pos) const
 Override PointCloud operator[] to shorten code. More...
 

Protected Member Functions

bool initCompute () override
 Internal computation initialization. More...
 
void handleMatches (const pcl::Indices &base_indices, std::vector< pcl::Indices > &matches, MatchingCandidates &candidates) override
 Method to handle current candidate matches. More...
 
int validateTransformation (Eigen::Matrix4f &transformation, float &fitness_score) override
 Validate the transformation by calculating the score value after transforming the input source cloud. More...
 
void finalCompute (const std::vector< MatchingCandidates > &candidates) override
 Final computation of best match out of vector of matches. More...
 
- Protected Member Functions inherited from pcl::registration::FPCSInitialAlignment< PointSource, PointTarget, pcl::Normal, float >
void computeTransformation (PointCloudSource &output, const Eigen::Matrix4f &guess) override
 Rigid transformation computation method. More...
 
int selectBase (pcl::Indices &base_indices, float(&ratio)[2])
 Select an approximately coplanar set of four points from the source cloud. More...
 
int selectBaseTriangle (pcl::Indices &base_indices)
 Select randomly a triplet of points with large point-to-point distances. More...
 
void setupBase (pcl::Indices &base_indices, float(&ratio)[2])
 Setup the base (four coplanar points) by ordering the points and computing intersection ratios and segment to segment distances of base diagonal. More...
 
float segmentToSegmentDist (const pcl::Indices &base_indices, float(&ratio)[2])
 Calculate intersection ratios and segment to segment distances of base diagonals. More...
 
virtual int bruteForceCorrespondences (int idx1, int idx2, pcl::Correspondences &pairs)
 Search for corresponding point pairs given the distance between two base points. More...
 
virtual int determineBaseMatches (const pcl::Indices &base_indices, std::vector< pcl::Indices > &matches, const pcl::Correspondences &pairs_a, const pcl::Correspondences &pairs_b, const float(&ratio)[2])
 Determine base matches by combining the point pair candidate and search for coinciding intersection points using the diagonal segment ratios of base B. More...
 
int checkBaseMatch (const pcl::Indices &match_indices, const float(&ds)[4])
 Check if outer rectangle distance of matched points fit with the base rectangle. More...
 
virtual void linkMatchWithBase (const pcl::Indices &base_indices, pcl::Indices &match_indices, pcl::Correspondences &correspondences)
 Sets the correspondences between the base B and the match M by using the distance of each point to the centroid of the rectangle. More...
 
virtual int validateMatch (const pcl::Indices &base_indices, const pcl::Indices &match_indices, const pcl::Correspondences &correspondences, Eigen::Matrix4f &transformation)
 Validate the matching by computing the transformation between the source and target based on the four matched points and by comparing the mean square error (MSE) to a threshold. More...
 
- Protected Member Functions inherited from pcl::Registration< PointSource, PointTarget, float >
bool searchForNeighbors (const PointCloudSource &cloud, int index, pcl::Indices &indices, std::vector< float > &distances)
 Search for the closest nearest neighbor of a given point. More...
 
virtual void computeTransformation (PointCloudSource &output, const Matrix4 &guess)=0
 Abstract transformation computation method with initial guess. More...
 
- Protected Member Functions inherited from pcl::PCLBase< PointSource >
bool initCompute ()
 This method should get called before starting the actual computation. More...
 
bool deinitCompute ()
 This method should get called after finishing the actual computation. More...
 

Protected Attributes

float lower_trl_boundary_ {-1.f}
 Lower boundary for translation costs calculation. More...
 
float upper_trl_boundary_ {-1.f}
 Upper boundary for translation costs calculation. More...
 
float lambda_ {0.5f}
 Weighting factor for translation costs (standard = 0.5). More...
 
MatchingCandidates candidates_
 Container for resulting vector of registration candidates. More...
 
bool use_trl_score_ {false}
 Flag if translation score should be used in validation (internal calculation). More...
 
pcl::IndicesPtr indices_validation_
 Subset of input indices on which we evaluate candidates. More...
 
- Protected Attributes inherited from pcl::registration::FPCSInitialAlignment< PointSource, PointTarget, pcl::Normal, float >
NormalsConstPtr source_normals_
 Normals of source point cloud. More...
 
NormalsConstPtr target_normals_
 Normals of target point cloud. More...
 
int nr_threads_
 Number of threads for parallelization (standard = 1). More...
 
float approx_overlap_
 Estimated overlap between source and target (standard = 0.5). More...
 
float delta_
 Delta value of 4pcs algorithm (standard = 1.0). More...
 
float score_threshold_
 Score threshold to stop calculation with success. More...
 
int nr_samples_
 The number of points to uniformly sample the source point cloud. More...
 
float max_norm_diff_
 Maximum normal difference of corresponding point pairs in degrees (standard = 90). More...
 
int max_runtime_
 Maximum allowed computation time in seconds (standard = 0 => ~unlimited). More...
 
float fitness_score_
 Resulting fitness score of the best match. More...
 
float diameter_
 Estimated diameter of the target point cloud. More...
 
float max_base_diameter_sqr_
 Estimated squared metric overlap between source and target. More...
 
bool use_normals_
 Use normals flag. More...
 
bool normalize_delta_
 Normalize delta flag. More...
 
pcl::IndicesPtr source_indices_
 A pointer to the vector of source point indices to use after sampling. More...
 
pcl::IndicesPtr target_indices_
 A pointer to the vector of target point indices to use after sampling. More...
 
float max_pair_diff_
 Maximal difference between corresponding point pairs in source and target. More...
 
float max_edge_diff_
 Maximal difference between the length of the base edges and valid match edges. More...
 
float coincidation_limit_
 Maximal distance between coinciding intersection points to find valid matches. More...
 
float max_mse_
 Maximal mean squared errors of a transformation calculated from a candidate match. More...
 
float max_inlier_dist_sqr_
 Maximal squared point distance between source and target points to count as inlier. More...
 
const float small_error_
 Definition of a small error. More...
 
- Protected Attributes inherited from pcl::Registration< PointSource, PointTarget, float >
std::string reg_name_
 The registration method name. More...
 
KdTreePtr tree_
 A pointer to the spatial search object. More...
 
KdTreeReciprocalPtr tree_reciprocal_
 A pointer to the spatial search object of the source. More...
 
int nr_iterations_
 The number of iterations the internal optimization ran for (used internally). More...
 
int max_iterations_
 The maximum number of iterations the internal optimization should run for. More...
 
int ransac_iterations_
 The number of iterations RANSAC should run for. More...
 
PointCloudTargetConstPtr target_
 The input point cloud dataset target. More...
 
Matrix4 final_transformation_
 The final transformation matrix estimated by the registration method after N iterations. More...
 
Matrix4 transformation_
 The transformation matrix estimated by the registration method. More...
 
Matrix4 previous_transformation_
 The previous transformation matrix estimated by the registration method (used internally). More...
 
double transformation_epsilon_
 The maximum difference between two consecutive transformations in order to consider convergence (user defined). More...
 
double transformation_rotation_epsilon_
 The maximum rotation difference between two consecutive transformations in order to consider convergence (user defined). More...
 
double euclidean_fitness_epsilon_
 The maximum allowed Euclidean error between two consecutive steps in the ICP loop, before the algorithm is considered to have converged. More...
 
double corr_dist_threshold_
 The maximum distance threshold between two correspondent points in source <-> target. More...
 
double inlier_threshold_
 The inlier distance threshold for the internal RANSAC outlier rejection loop. More...
 
bool converged_
 Holds internal convergence state, given user parameters. More...
 
unsigned int min_number_correspondences_
 The minimum number of correspondences that the algorithm needs before attempting to estimate the transformation. More...
 
CorrespondencesPtr correspondences_
 The set of correspondences determined at this ICP step. More...
 
TransformationEstimationPtr transformation_estimation_
 A TransformationEstimation object, used to calculate the 4x4 rigid transformation. More...
 
CorrespondenceEstimationPtr correspondence_estimation_
 A CorrespondenceEstimation object, used to estimate correspondences between the source and the target cloud. More...
 
std::vector< CorrespondenceRejectorPtrcorrespondence_rejectors_
 The list of correspondence rejectors to use. More...
 
bool target_cloud_updated_
 Variable that stores whether we have a new target cloud, meaning we need to pre-process it again. More...
 
bool source_cloud_updated_
 Variable that stores whether we have a new source cloud, meaning we need to pre-process it again. More...
 
bool force_no_recompute_
 A flag which, if set, means the tree operating on the target cloud will never be recomputed. More...
 
bool force_no_recompute_reciprocal_
 A flag which, if set, means the tree operating on the source cloud will never be recomputed. More...
 
std::function< UpdateVisualizerCallbackSignatureupdate_visualizer_
 Callback function to update intermediate source point cloud position during it's registration to the target point cloud. More...
 
- Protected Attributes inherited from pcl::PCLBase< PointSource >
PointCloudConstPtr input_
 The input point cloud dataset. More...
 
IndicesPtr indices_
 A pointer to the vector of point indices to use. More...
 
bool use_indices_
 Set to true if point indices are used. More...
 
bool fake_indices_
 If no set of indices are given, we construct a set of fake indices that mimic the input PointCloud. More...
 

Additional Inherited Members

- Public Types inherited from pcl::Registration< PointSource, PointTarget, float >
using Matrix4 = Eigen::Matrix< float, 4, 4 >
 
using Ptr = shared_ptr< Registration< PointSource, PointTarget, float > >
 
using ConstPtr = shared_ptr< const Registration< PointSource, PointTarget, float > >
 
using CorrespondenceRejectorPtr = pcl::registration::CorrespondenceRejector::Ptr
 
using KdTree = pcl::search::KdTree< PointTarget >
 
using KdTreePtr = typename KdTree::Ptr
 
using KdTreeReciprocal = pcl::search::KdTree< PointSource >
 
using KdTreeReciprocalPtr = typename KdTreeReciprocal::Ptr
 
using PointCloudSource = pcl::PointCloud< PointSource >
 
using PointCloudSourcePtr = typename PointCloudSource::Ptr
 
using PointCloudSourceConstPtr = typename PointCloudSource::ConstPtr
 
using PointCloudTarget = pcl::PointCloud< PointTarget >
 
using PointCloudTargetPtr = typename PointCloudTarget::Ptr
 
using PointCloudTargetConstPtr = typename PointCloudTarget::ConstPtr
 
using PointRepresentationConstPtr = typename KdTree::PointRepresentationConstPtr
 
using TransformationEstimation = typename pcl::registration::TransformationEstimation< PointSource, PointTarget, float >
 
using TransformationEstimationPtr = typename TransformationEstimation::Ptr
 
using TransformationEstimationConstPtr = typename TransformationEstimation::ConstPtr
 
using CorrespondenceEstimation = pcl::registration::CorrespondenceEstimationBase< PointSource, PointTarget, float >
 
using CorrespondenceEstimationPtr = typename CorrespondenceEstimation::Ptr
 
using CorrespondenceEstimationConstPtr = typename CorrespondenceEstimation::ConstPtr
 
using UpdateVisualizerCallbackSignature = void(const pcl::PointCloud< PointSource > &, const pcl::Indices &, const pcl::PointCloud< PointTarget > &, const pcl::Indices &)
 The callback signature to the function updating intermediate source point cloud position during it's registration to the target point cloud. More...
 
- Public Types inherited from pcl::PCLBase< PointSource >
using PointCloud = pcl::PointCloud< PointSource >
 
using PointCloudPtr = typename PointCloud::Ptr
 
using PointCloudConstPtr = typename PointCloud::ConstPtr
 
using PointIndicesPtr = PointIndices::Ptr
 
using PointIndicesConstPtr = PointIndices::ConstPtr
 

Detailed Description

template<typename PointSource, typename PointTarget, typename NormalT = pcl::Normal, typename Scalar = float>
class pcl::registration::KFPCSInitialAlignment< PointSource, PointTarget, NormalT, Scalar >

KFPCSInitialAlignment computes corresponding four point congruent sets based on keypoints as described in: "Markerless point cloud registration with keypoint-based 4-points congruent sets", Pascal Theiler, Jan Dirk Wegner, Konrad Schindler.

ISPRS Annals II-5/W2, 2013. Presented at ISPRS Workshop Laser Scanning, Antalya, Turkey, 2013.

Note
Method has since been improved and some variations to the paper exist.

The main differences to FPCSInitialAlignment are:

  1. KFPCSInitialAlignment stores all solution candidates instead of only the best one
  2. KFPCSInitialAlignment uses an MSAC approach to score candidates instead of counting inliers
Author
P.W.Theiler

Definition at line 64 of file ia_kfpcs.h.

Constructor & Destructor Documentation

◆ KFPCSInitialAlignment()

template<typename PointSource , typename PointTarget , typename NormalT , typename Scalar >
pcl::registration::KFPCSInitialAlignment< PointSource, PointTarget, NormalT, Scalar >::KFPCSInitialAlignment

Constructor.

Definition at line 47 of file ia_kfpcs.hpp.

References pcl::Registration< PointSource, PointTarget, float >::reg_name_.

◆ ~KFPCSInitialAlignment()

template<typename PointSource , typename PointTarget , typename NormalT = pcl::Normal, typename Scalar = float>
pcl::registration::KFPCSInitialAlignment< PointSource, PointTarget, NormalT, Scalar >::~KFPCSInitialAlignment ( )
overridedefault

Destructor.

Member Function Documentation

◆ finalCompute()

template<typename PointSource , typename PointTarget , typename NormalT , typename Scalar >
void pcl::registration::KFPCSInitialAlignment< PointSource, PointTarget, NormalT, Scalar >::finalCompute ( const std::vector< MatchingCandidates > &  candidates)
overrideprotectedvirtual

Final computation of best match out of vector of matches.

To avoid cross thread dependencies during parallel running, a best match for each try was calculated.

Note
For forwards compatibility the candidates are stored in vectors of 'vectors of size 1'.
Parameters
[in]candidatesvector of candidate matches

Reimplemented from pcl::registration::FPCSInitialAlignment< PointSource, PointTarget, pcl::Normal, float >.

Definition at line 215 of file ia_kfpcs.hpp.

◆ getLambda()

template<typename PointSource , typename PointTarget , typename NormalT = pcl::Normal, typename Scalar = float>
float pcl::registration::KFPCSInitialAlignment< PointSource, PointTarget, NormalT, Scalar >::getLambda ( ) const
inline
Returns
the weighting factor of the translation cost term.

Definition at line 134 of file ia_kfpcs.h.

References pcl::registration::KFPCSInitialAlignment< PointSource, PointTarget, NormalT, Scalar >::lambda_.

◆ getLowerTranslationThreshold()

template<typename PointSource , typename PointTarget , typename NormalT = pcl::Normal, typename Scalar = float>
float pcl::registration::KFPCSInitialAlignment< PointSource, PointTarget, NormalT, Scalar >::getLowerTranslationThreshold ( ) const
inline
Returns
the lower translation threshold used for score evaluation.

Definition at line 118 of file ia_kfpcs.h.

References pcl::registration::KFPCSInitialAlignment< PointSource, PointTarget, NormalT, Scalar >::lower_trl_boundary_.

◆ getNBestCandidates()

template<typename PointSource , typename PointTarget , typename NormalT , typename Scalar >
void pcl::registration::KFPCSInitialAlignment< PointSource, PointTarget, NormalT, Scalar >::getNBestCandidates ( int  n,
float  min_angle3d,
float  min_translation3d,
MatchingCandidates candidates 
)

Get the N best unique candidate matches according to their fitness score.

The method only returns unique transformations comparing the translation and the 3D rotation to already returned transformations.

Note
The method may return less than N candidates, if the number of unique candidates is smaller than N
Parameters
[in]nnumber of best candidates to return
[in]min_angle3dminimum 3D angle difference in radian
[in]min_translation3dminimum 3D translation difference
[out]candidatesvector of unique candidates

Definition at line 257 of file ia_kfpcs.hpp.

◆ getTBestCandidates()

template<typename PointSource , typename PointTarget , typename NormalT , typename Scalar >
void pcl::registration::KFPCSInitialAlignment< PointSource, PointTarget, NormalT, Scalar >::getTBestCandidates ( float  t,
float  min_angle3d,
float  min_translation3d,
MatchingCandidates candidates 
)

Get all unique candidate matches with fitness scores above a threshold t.

The method only returns unique transformations comparing the translation and the 3D rotation to already returned transformations.

Parameters
[in]tfitness score threshold
[in]min_angle3dminimum 3D angle difference in radian
[in]min_translation3dminimum 3D translation difference
[out]candidatesvector of unique candidates

Definition at line 294 of file ia_kfpcs.hpp.

◆ getUpperTranslationThreshold()

template<typename PointSource , typename PointTarget , typename NormalT = pcl::Normal, typename Scalar = float>
float pcl::registration::KFPCSInitialAlignment< PointSource, PointTarget, NormalT, Scalar >::getUpperTranslationThreshold ( ) const
inline
Returns
the upper translation threshold used for score evaluation.

Definition at line 102 of file ia_kfpcs.h.

References pcl::registration::KFPCSInitialAlignment< PointSource, PointTarget, NormalT, Scalar >::upper_trl_boundary_.

◆ handleMatches()

template<typename PointSource , typename PointTarget , typename NormalT , typename Scalar >
void pcl::registration::KFPCSInitialAlignment< PointSource, PointTarget, NormalT, Scalar >::handleMatches ( const pcl::Indices base_indices,
std::vector< pcl::Indices > &  matches,
MatchingCandidates candidates 
)
overrideprotectedvirtual

Method to handle current candidate matches.

Here we validate and evaluate the matches w.r.t the base and store the sorted matches (together with score values and estimated transformations).

Parameters
[in]base_indicesindices of base B
[in,out]matchesvector of candidate matches w.r.t the base B. The candidate matches are reordered during this step.
[out]candidatesvector which contains the candidates matches M

Reimplemented from pcl::registration::FPCSInitialAlignment< PointSource, PointTarget, pcl::Normal, float >.

Definition at line 118 of file ia_kfpcs.hpp.

◆ initCompute()

template<typename PointSource , typename PointTarget , typename NormalT , typename Scalar >
bool pcl::registration::KFPCSInitialAlignment< PointSource, PointTarget, NormalT, Scalar >::initCompute
overrideprotectedvirtual

◆ setLambda()

template<typename PointSource , typename PointTarget , typename NormalT = pcl::Normal, typename Scalar = float>
void pcl::registration::KFPCSInitialAlignment< PointSource, PointTarget, NormalT, Scalar >::setLambda ( float  lambda)
inline

Set the weighting factor of the translation cost term.

Parameters
[in]lambdathe weighting factor of the translation cost term

Definition at line 127 of file ia_kfpcs.h.

References pcl::registration::KFPCSInitialAlignment< PointSource, PointTarget, NormalT, Scalar >::lambda_.

◆ setLowerTranslationThreshold()

template<typename PointSource , typename PointTarget , typename NormalT = pcl::Normal, typename Scalar = float>
void pcl::registration::KFPCSInitialAlignment< PointSource, PointTarget, NormalT, Scalar >::setLowerTranslationThreshold ( float  lower_trl_boundary)
inline

Set the lower translation threshold used for score evaluation.

Parameters
[in]lower_trl_boundarylower translation threshold

Definition at line 111 of file ia_kfpcs.h.

References pcl::registration::KFPCSInitialAlignment< PointSource, PointTarget, NormalT, Scalar >::lower_trl_boundary_.

◆ setUpperTranslationThreshold()

template<typename PointSource , typename PointTarget , typename NormalT = pcl::Normal, typename Scalar = float>
void pcl::registration::KFPCSInitialAlignment< PointSource, PointTarget, NormalT, Scalar >::setUpperTranslationThreshold ( float  upper_trl_boundary)
inline

Set the upper translation threshold used for score evaluation.

Parameters
[in]upper_trl_boundaryupper translation threshold

Definition at line 95 of file ia_kfpcs.h.

References pcl::registration::KFPCSInitialAlignment< PointSource, PointTarget, NormalT, Scalar >::upper_trl_boundary_.

◆ validateTransformation()

template<typename PointSource , typename PointTarget , typename NormalT , typename Scalar >
int pcl::registration::KFPCSInitialAlignment< PointSource, PointTarget, NormalT, Scalar >::validateTransformation ( Eigen::Matrix4f &  transformation,
float &  fitness_score 
)
overrideprotectedvirtual

Validate the transformation by calculating the score value after transforming the input source cloud.

The resulting score is later used as the decision criteria of the best fitting match.

Parameters
[out]transformationupdated orientation matrix using all inliers
[out]fitness_scorecurrent best score
Note
fitness score is only updated if the score of the current transformation exceeds the input one.
Returns
  • < 0 if previous result is better than the current one (score remains)
  • = 0 current result is better than the previous one (score updated)

Reimplemented from pcl::registration::FPCSInitialAlignment< PointSource, PointTarget, pcl::Normal, float >.

Definition at line 164 of file ia_kfpcs.hpp.

References M_PI, M_PI_2, pcl::PointCloud< PointT >::size(), and pcl::transformPointCloud().

Member Data Documentation

◆ candidates_

template<typename PointSource , typename PointTarget , typename NormalT = pcl::Normal, typename Scalar = float>
MatchingCandidates pcl::registration::KFPCSInitialAlignment< PointSource, PointTarget, NormalT, Scalar >::candidates_
protected

Container for resulting vector of registration candidates.

Definition at line 258 of file ia_kfpcs.h.

◆ indices_validation_

template<typename PointSource , typename PointTarget , typename NormalT = pcl::Normal, typename Scalar = float>
pcl::IndicesPtr pcl::registration::KFPCSInitialAlignment< PointSource, PointTarget, NormalT, Scalar >::indices_validation_
protected

Subset of input indices on which we evaluate candidates.

To speed up the evaluation, we only use a fix number of indices defined during initialization.

Definition at line 268 of file ia_kfpcs.h.

◆ lambda_

template<typename PointSource , typename PointTarget , typename NormalT = pcl::Normal, typename Scalar = float>
float pcl::registration::KFPCSInitialAlignment< PointSource, PointTarget, NormalT, Scalar >::lambda_ {0.5f}
protected

◆ lower_trl_boundary_

template<typename PointSource , typename PointTarget , typename NormalT = pcl::Normal, typename Scalar = float>
float pcl::registration::KFPCSInitialAlignment< PointSource, PointTarget, NormalT, Scalar >::lower_trl_boundary_ {-1.f}
protected

Lower boundary for translation costs calculation.

Note
If not set by the user, the translation costs are not used during evaluation.

Definition at line 246 of file ia_kfpcs.h.

Referenced by pcl::registration::KFPCSInitialAlignment< PointSource, PointTarget, NormalT, Scalar >::getLowerTranslationThreshold(), and pcl::registration::KFPCSInitialAlignment< PointSource, PointTarget, NormalT, Scalar >::setLowerTranslationThreshold().

◆ upper_trl_boundary_

template<typename PointSource , typename PointTarget , typename NormalT = pcl::Normal, typename Scalar = float>
float pcl::registration::KFPCSInitialAlignment< PointSource, PointTarget, NormalT, Scalar >::upper_trl_boundary_ {-1.f}
protected

Upper boundary for translation costs calculation.

Note
If not set by the user, it is calculated from the estimated overlap and the diameter of the point cloud.

Definition at line 252 of file ia_kfpcs.h.

Referenced by pcl::registration::KFPCSInitialAlignment< PointSource, PointTarget, NormalT, Scalar >::getUpperTranslationThreshold(), and pcl::registration::KFPCSInitialAlignment< PointSource, PointTarget, NormalT, Scalar >::setUpperTranslationThreshold().

◆ use_trl_score_

template<typename PointSource , typename PointTarget , typename NormalT = pcl::Normal, typename Scalar = float>
bool pcl::registration::KFPCSInitialAlignment< PointSource, PointTarget, NormalT, Scalar >::use_trl_score_ {false}
protected

Flag if translation score should be used in validation (internal calculation).

Definition at line 262 of file ia_kfpcs.h.


The documentation for this class was generated from the following files: