|
using | FeatureCloud = pcl::PointCloud< PointFeature > |
|
using | Ptr = shared_ptr< NormalBasedSignatureEstimation< PointT, PointNT, PointFeature > > |
|
using | ConstPtr = shared_ptr< const NormalBasedSignatureEstimation< PointT, PointNT, PointFeature > > |
|
using | PointCloudN = pcl::PointCloud< PointNT > |
|
using | PointCloudNPtr = typename PointCloudN::Ptr |
|
using | PointCloudNConstPtr = typename PointCloudN::ConstPtr |
|
using | Ptr = shared_ptr< FeatureFromNormals< PointT, PointNT, PointFeature > > |
|
using | ConstPtr = shared_ptr< const FeatureFromNormals< PointT, PointNT, PointFeature > > |
|
using | BaseClass = PCLBase< PointInT > |
|
using | Ptr = shared_ptr< Feature< PointInT, PointOutT > > |
|
using | ConstPtr = shared_ptr< const Feature< PointInT, PointOutT > > |
|
using | KdTree = pcl::search::Search< PointInT > |
|
using | KdTreePtr = typename KdTree::Ptr |
|
using | PointCloudIn = pcl::PointCloud< PointInT > |
|
using | PointCloudInPtr = typename PointCloudIn::Ptr |
|
using | PointCloudInConstPtr = typename PointCloudIn::ConstPtr |
|
using | PointCloudOut = pcl::PointCloud< PointOutT > |
|
using | SearchMethod = std::function< int(std::size_t, double, pcl::Indices &, std::vector< float > &)> |
|
using | SearchMethodSurface = std::function< int(const PointCloudIn &cloud, std::size_t index, double, pcl::Indices &, std::vector< float > &)> |
|
using | PointCloud = pcl::PointCloud< PointInT > |
|
using | PointCloudPtr = typename PointCloud::Ptr |
|
using | PointCloudConstPtr = typename PointCloud::ConstPtr |
|
using | PointIndicesPtr = PointIndices::Ptr |
|
using | PointIndicesConstPtr = PointIndices::ConstPtr |
|
|
| NormalBasedSignatureEstimation () |
| Empty constructor, initializes the internal parameters to the default values. More...
|
|
void | setN (std::size_t n) |
| Setter method for the N parameter - the length of the columns used for the Discrete Fourier Transform. More...
|
|
std::size_t | getN () |
| Returns the N parameter - the length of the columns used for the Discrete Fourier Transform. More...
|
|
void | setM (std::size_t m) |
| Setter method for the M parameter - the length of the rows used for the Discrete Cosine Transform. More...
|
|
std::size_t | getM () |
| Returns the M parameter - the length of the rows used for the Discrete Cosine Transform. More...
|
|
void | setNPrime (std::size_t n_prime) |
| Setter method for the N' parameter - the number of columns to be taken from the matrix of DFT and DCT values that will be contained in the output feature vector. More...
|
|
std::size_t | getNPrime () |
| Returns the N' parameter - the number of rows to be taken from the matrix of DFT and DCT values that will be contained in the output feature vector. More...
|
|
void | setMPrime (std::size_t m_prime) |
| Setter method for the M' parameter - the number of rows to be taken from the matrix of DFT and DCT values that will be contained in the output feature vector. More...
|
|
std::size_t | getMPrime () |
| Returns the M' parameter - the number of rows to be taken from the matrix of DFT and DCT values that will be contained in the output feature vector. More...
|
|
void | setScale (float scale) |
| Setter method for the scale parameter - used to determine the radius of the sampling disc around the point of interest - linked to the smoothing scale of the input cloud. More...
|
|
float | getScale () |
| Returns the scale parameter - used to determine the radius of the sampling disc around the point of interest - linked to the smoothing scale of the input cloud. More...
|
|
| FeatureFromNormals () |
| Empty constructor. More...
|
|
void | setInputNormals (const PointCloudNConstPtr &normals) |
| Provide a pointer to the input dataset that contains the point normals of the XYZ dataset. More...
|
|
PointCloudNConstPtr | getInputNormals () const |
| Get a pointer to the normals of the input XYZ point cloud dataset. More...
|
|
| Feature () |
| Empty constructor. More...
|
|
void | setSearchSurface (const PointCloudInConstPtr &cloud) |
| Provide a pointer to a dataset to add additional information to estimate the features for every point in the input dataset. More...
|
|
PointCloudInConstPtr | getSearchSurface () const |
| Get a pointer to the surface point cloud dataset. More...
|
|
void | setSearchMethod (const KdTreePtr &tree) |
| Provide a pointer to the search object. More...
|
|
KdTreePtr | getSearchMethod () const |
| Get a pointer to the search method used. More...
|
|
double | getSearchParameter () const |
| Get the internal search parameter. More...
|
|
void | setKSearch (int k) |
| Set the number of k nearest neighbors to use for the feature estimation. More...
|
|
int | getKSearch () const |
| get the number of k nearest neighbors used for the feature estimation. More...
|
|
void | setRadiusSearch (double radius) |
| Set the sphere radius that is to be used for determining the nearest neighbors used for the feature estimation. More...
|
|
double | getRadiusSearch () const |
| Get the sphere radius used for determining the neighbors. More...
|
|
void | compute (PointCloudOut &output) |
| Base method for feature estimation for all points given in <setInputCloud (), setIndices ()> using the surface in setSearchSurface () and the spatial locator in setSearchMethod () More...
|
|
| PCLBase () |
| Empty constructor. More...
|
|
| PCLBase (const PCLBase &base) |
| Copy constructor. More...
|
|
virtual | ~PCLBase ()=default |
| Destructor. More...
|
|
virtual void | setInputCloud (const PointCloudConstPtr &cloud) |
| Provide a pointer to the input dataset. More...
|
|
PointCloudConstPtr const | getInputCloud () const |
| Get a pointer to the input point cloud dataset. More...
|
|
virtual void | setIndices (const IndicesPtr &indices) |
| Provide a pointer to the vector of indices that represents the input data. More...
|
|
virtual void | setIndices (const IndicesConstPtr &indices) |
| Provide a pointer to the vector of indices that represents the input data. More...
|
|
virtual void | setIndices (const PointIndicesConstPtr &indices) |
| Provide a pointer to the vector of indices that represents the input data. More...
|
|
virtual void | setIndices (std::size_t row_start, std::size_t col_start, std::size_t nb_rows, std::size_t nb_cols) |
| Set the indices for the points laying within an interest region of the point cloud. More...
|
|
IndicesPtr | getIndices () |
| Get a pointer to the vector of indices used. More...
|
|
IndicesConstPtr const | getIndices () const |
| Get a pointer to the vector of indices used. More...
|
|
const PointInT & | operator[] (std::size_t pos) const |
| Override PointCloud operator[] to shorten code. More...
|
|
|
void | computeFeature (FeatureCloud &output) override |
|
virtual bool | initCompute () |
| This method should get called before starting the actual computation. More...
|
|
const std::string & | getClassName () const |
| Get a string representation of the name of this class. More...
|
|
virtual bool | deinitCompute () |
| This method should get called after ending the actual computation. More...
|
|
int | searchForNeighbors (std::size_t index, double parameter, pcl::Indices &indices, std::vector< float > &distances) const |
| Search for k-nearest neighbors using the spatial locator from setSearchmethod, and the given surface from setSearchSurface. More...
|
|
int | searchForNeighbors (const PointCloudIn &cloud, std::size_t index, double parameter, pcl::Indices &indices, std::vector< float > &distances) const |
| Search for k-nearest neighbors using the spatial locator from setSearchmethod, and the given surface from setSearchSurface. More...
|
|
bool | initCompute () |
| This method should get called before starting the actual computation. More...
|
|
bool | deinitCompute () |
| This method should get called after finishing the actual computation. More...
|
|
template<typename PointT, typename PointNT, typename PointFeature>
class pcl::NormalBasedSignatureEstimation< PointT, PointNT, PointFeature >
Normal-based feature signature estimation class.
Obtains the feature vector by applying Discrete Cosine and Fourier Transforms on an NxM array of real numbers representing the projection distances of the points in the input cloud to a disc around the point of interest. Please consult the following publication for more details: Xinju Li and Igor Guskov Multi-scale features for approximate alignment of point-based surfaces Proceedings of the third Eurographics symposium on Geometry processing July 2005, Vienna, Austria
- Note
- These features were meant to be used at keypoints detected by a detector using different smoothing radii (e.g., SmoothedSurfacesKeypoint)
- Author
- Alexandru-Eugen Ichim
Definition at line 60 of file normal_based_signature.h.