40 #ifndef PCL_FEATURES_IMPL_NORMAL_BASED_SIGNATURE_H_
41 #define PCL_FEATURES_IMPL_NORMAL_BASED_SIGNATURE_H_
43 #include <pcl/features/normal_based_signature.h>
45 template <
typename Po
intT,
typename Po
intNT,
typename Po
intFeature>
void
50 PointFeature test_feature;
51 if (N_prime_ * M_prime_ !=
sizeof (test_feature.values) / sizeof (
float))
53 PCL_ERROR (
"NormalBasedSignatureEstimation: not using the proper signature size: %u vs %u\n", N_prime_ * M_prime_,
sizeof (test_feature.values) / sizeof (
float));
58 std::vector<float> k_sqr_distances;
60 tree_->setInputCloud (input_);
61 output.
resize (indices_->size ());
63 for (std::size_t index_i = 0; index_i < indices_->size (); ++index_i)
65 std::size_t point_i = (*indices_)[index_i];
66 Eigen::MatrixXf s_matrix (N_, M_);
68 Eigen::Vector4f center_point = (*input_)[point_i].getVector4fMap ();
70 for (std::size_t k = 0; k < N_; ++k)
72 Eigen::VectorXf s_row (M_);
74 for (std::size_t l = 0; l < M_; ++l)
76 Eigen::Vector4f normal = (*normals_)[point_i].getNormalVector4fMap ();
77 Eigen::Vector4f normal_u = Eigen::Vector4f::Zero ();
78 Eigen::Vector4f normal_v = Eigen::Vector4f::Zero ();
80 if (std::abs (normal.x ()) > 0.0001f)
82 normal_u.x () = - normal.y () / normal.x ();
85 normal_u.normalize ();
88 else if (std::abs (normal.y ()) > 0.0001f)
91 normal_u.y () = - normal.x () / normal.y ();
93 normal_u.normalize ();
99 normal_u.z () = - normal.y () / normal.z ();
101 normal_v = normal.cross3 (normal_u);
103 Eigen::Vector4f zeta_point = 2.0f *
static_cast<float> (l + 1) * scale_h_ /
static_cast<float> (M_) *
104 (std::cos (2.0f *
static_cast<float> (
M_PI) *
static_cast<float> ((k + 1) / N_)) * normal_u +
105 sinf (2.0f *
static_cast<float> (
M_PI) *
static_cast<float> ((k + 1) / N_)) * normal_v);
108 Eigen::Vector4f zeta_point_plus_center = zeta_point + center_point;
110 zeta_point_pcl.x = zeta_point_plus_center.x (); zeta_point_pcl.y = zeta_point_plus_center.y (); zeta_point_pcl.z = zeta_point_plus_center.z ();
112 tree_->radiusSearch (zeta_point_pcl, search_radius_, k_indices, k_sqr_distances);
115 if (k_indices.empty ())
117 k_indices.resize (5);
118 k_sqr_distances.resize (5);
119 tree_->nearestKSearch (zeta_point_pcl, 5, k_indices, k_sqr_distances);
122 Eigen::Vector4f average_normal = Eigen::Vector4f::Zero ();
124 float average_normalization_factor = 0.0f;
127 for (std::size_t nn_i = 0; nn_i < k_indices.size (); ++nn_i)
129 if (k_sqr_distances[nn_i] < 1e-7f)
131 average_normal = (*normals_)[k_indices[nn_i]].getNormalVector4fMap ();
132 average_normalization_factor = 1.0f;
135 average_normal += (*normals_)[k_indices[nn_i]].getNormalVector4fMap () / k_sqr_distances[nn_i];
136 average_normalization_factor += 1.0f / k_sqr_distances[nn_i];
138 average_normal /= average_normalization_factor;
139 float s = zeta_point.dot (average_normal) / zeta_point.norm ();
144 Eigen::VectorXf dct_row (M_);
145 for (Eigen::Index m = 0; m < s_row.size (); ++m)
148 for (Eigen::Index n = 0; n < s_row.size (); ++n)
149 Xk +=
static_cast<float> (s_row[n] * std::cos (
M_PI / (
static_cast<double> (M_ * n) + 0.5) *
static_cast<double> (k)));
153 s_matrix.row (k).matrix () = dct_row;
157 Eigen::MatrixXf dft_matrix (N_, M_);
158 for (std::size_t column_i = 0; column_i < M_; ++column_i)
160 Eigen::VectorXf dft_col (N_);
161 for (std::size_t k = 0; k < N_; ++k)
163 float Xk_real = 0.0f, Xk_imag = 0.0f;
164 for (std::size_t n = 0; n < N_; ++n)
166 Xk_real +=
static_cast<float> (s_matrix (n, column_i) * std::cos (2.0f *
M_PI /
static_cast<double> (N_ * k * n)));
167 Xk_imag +=
static_cast<float> (s_matrix (n, column_i) * sin (2.0f *
M_PI /
static_cast<double> (N_ * k * n)));
169 dft_col[k] = std::sqrt (Xk_real*Xk_real + Xk_imag*Xk_imag);
171 dft_matrix.col (column_i).matrix () = dft_col;
174 Eigen::MatrixXf final_matrix = dft_matrix.block (0, 0, N_prime_, M_prime_);
176 PointFeature feature_point;
177 for (std::size_t i = 0; i < N_prime_; ++i)
178 for (std::size_t j = 0; j < M_prime_; ++j)
179 feature_point.values[i*M_prime_ + j] = final_matrix (i, j);
181 output[index_i] = feature_point;
187 #define PCL_INSTANTIATE_NormalBasedSignatureEstimation(T,NT,OutT) template class PCL_EXPORTS pcl::NormalBasedSignatureEstimation<T,NT,OutT>;
void computeFeature(FeatureCloud &output) override
PointCloud represents the base class in PCL for storing collections of 3D points.
void resize(std::size_t count)
Resizes the container to contain count elements.
IndicesAllocator<> Indices
Type used for indices in PCL.
A point structure representing Euclidean xyz coordinates, and the RGB color.