Point Cloud Library (PCL)  1.15.1-dev
surfel_smoothing.hpp
1 /*
2  * Software License Agreement (BSD License)
3  *
4  * Copyright (c) 2011, Alexandru-Eugen Ichim
5  * Willow Garage, Inc
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  *
12  * * Redistributions of source code must retain the above copyright
13  * notice, this list of conditions and the following disclaimer.
14  * * Redistributions in binary form must reproduce the above
15  * copyright notice, this list of conditions and the following
16  * disclaimer in the documentation and/or other materials provided
17  * with the distribution.
18  * * Neither the name of Willow Garage, Inc. nor the names of its
19  * contributors may be used to endorse or promote products derived
20  * from this software without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
23  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
24  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
25  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
26  * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
27  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
28  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
29  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
30  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
32  * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
33  * POSSIBILITY OF SUCH DAMAGE.
34  *
35  * $Id$
36  */
37 
38 #ifndef PCL_SURFACE_IMPL_SURFEL_SMOOTHING_H_
39 #define PCL_SURFACE_IMPL_SURFEL_SMOOTHING_H_
40 
41 #include <pcl/search/auto.h>
42 #include <pcl/surface/surfel_smoothing.h>
43 #include <pcl/common/distances.h>
44 #include <pcl/console/print.h> // for PCL_ERROR, PCL_DEBUG
45 
46 //////////////////////////////////////////////////////////////////////////////////////////////
47 template <typename PointT, typename PointNT> bool
49 {
51  return false;
52 
53  if (!normals_)
54  {
55  PCL_ERROR ("SurfelSmoothing: normal cloud not set\n");
56  return false;
57  }
58 
59  if (input_->size () != normals_->size ())
60  {
61  PCL_ERROR ("SurfelSmoothing: number of input points different from the number of given normals\n");
62  return false;
63  }
64 
65  // Initialize the spatial locator
66  if (!tree_)
67  {
68  tree_.reset (pcl::search::autoSelectMethod<PointT>(input_, false, pcl::search::Purpose::radius_search));
69  }
70 
71  // create internal copies of the input - these will be modified
72  interm_cloud_ = PointCloudInPtr (new PointCloudIn (*input_));
73  interm_normals_ = NormalCloudPtr (new NormalCloud (*normals_));
74 
75  return (true);
76 }
77 
78 
79 //////////////////////////////////////////////////////////////////////////////////////////////
80 template <typename PointT, typename PointNT> float
82  NormalCloudPtr &output_normals)
83 {
84 // PCL_INFO ("SurfelSmoothing: cloud smoothing iteration starting ...\n");
85 
86  output_positions = PointCloudInPtr (new PointCloudIn);
87  output_positions->points.resize (interm_cloud_->size ());
88  output_normals = NormalCloudPtr (new NormalCloud);
89  output_normals->points.resize (interm_cloud_->size ());
90 
91  pcl::Indices nn_indices;
92  std::vector<float> nn_distances;
93 
94  std::vector<float> diffs (interm_cloud_->size ());
95  float total_residual = 0.0f;
96 
97  for (std::size_t i = 0; i < interm_cloud_->size (); ++i)
98  {
99  Eigen::Vector4f smoothed_point = Eigen::Vector4f::Zero ();
100  Eigen::Vector4f smoothed_normal = Eigen::Vector4f::Zero ();
101 
102  // get neighbors
103  // @todo using 5x the scale for searching instead of all the points to avoid O(N^2)
104  tree_->radiusSearch ((*interm_cloud_)[i], 5*scale_, nn_indices, nn_distances);
105 
106  float theta_normalization_factor = 0.0;
107  std::vector<float> theta (nn_indices.size ());
108  for (std::size_t nn_index_i = 0; nn_index_i < nn_indices.size (); ++nn_index_i)
109  {
110  float dist = pcl::squaredEuclideanDistance ((*interm_cloud_)[i], (*input_)[nn_indices[nn_index_i]]);//(*interm_cloud_)[nn_indices[nn_index_i]]);
111  float theta_i = std::exp ( (-1) * dist / scale_squared_);
112  theta_normalization_factor += theta_i;
113 
114  smoothed_normal += theta_i * (*interm_normals_)[nn_indices[nn_index_i]].getNormalVector4fMap ();
115 
116  theta[nn_index_i] = theta_i;
117  }
118 
119  smoothed_normal /= theta_normalization_factor;
120  smoothed_normal(3) = 0.0f;
121  smoothed_normal.normalize ();
122 
123 
124  // find minimum along the normal
125  float e_residual;
126  smoothed_point = (*interm_cloud_)[i].getVector4fMap ();
127  while (true)
128  {
129  e_residual = 0.0f;
130  smoothed_point(3) = 0.0f;
131  for (std::size_t nn_index_i = 0; nn_index_i < nn_indices.size (); ++nn_index_i)
132  {
133  Eigen::Vector4f neighbor = (*input_)[nn_indices[nn_index_i]].getVector4fMap ();//(*interm_cloud_)[nn_indices[nn_index_i]].getVector4fMap ();
134  neighbor(3) = 0.0f;
135  float dot_product = smoothed_normal.dot (neighbor - smoothed_point);
136  e_residual += theta[nn_index_i] * dot_product;// * dot_product;
137  }
138  e_residual /= theta_normalization_factor;
139  if (e_residual < 1e-5) break;
140 
141  smoothed_point += e_residual * smoothed_normal;
142  }
143 
144  total_residual += e_residual;
145 
146  (*output_positions)[i].getVector4fMap () = smoothed_point;
147  (*output_normals)[i].getNormalVector4fMap () = (*normals_)[i].getNormalVector4fMap ();//smoothed_normal;
148  }
149 
150 // std::cerr << "Total residual after iteration: " << total_residual << std::endl;
151 // PCL_INFO("SurfelSmoothing done iteration\n");
152  return total_residual;
153 }
154 
155 
156 template <typename PointT, typename PointNT> void
158  PointT &output_point,
159  PointNT &output_normal)
160 {
161  Eigen::Vector4f average_normal = Eigen::Vector4f::Zero ();
162  Eigen::Vector4f result_point = (*input_)[point_index].getVector4fMap ();
163  result_point(3) = 0.0f;
164 
165  // @todo parameter
166  float error_residual_threshold_ = 1e-3f;
167  float error_residual = error_residual_threshold_ + 1;
168  float last_error_residual = error_residual + 100.0f;
169 
170  pcl::Indices nn_indices;
171  std::vector<float> nn_distances;
172 
173  int big_iterations = 0;
174  int max_big_iterations = 500;
175 
176  while (std::fabs (error_residual) < std::fabs (last_error_residual) -error_residual_threshold_ &&
177  big_iterations < max_big_iterations)
178  {
179  average_normal = Eigen::Vector4f::Zero ();
180  big_iterations ++;
181  PointT aux_point; aux_point.x = result_point(0); aux_point.y = result_point(1); aux_point.z = result_point(2);
182  tree_->radiusSearch (aux_point, 5*scale_, nn_indices, nn_distances);
183 
184  float theta_normalization_factor = 0.0;
185  std::vector<float> theta (nn_indices.size ());
186  for (std::size_t nn_index_i = 0; nn_index_i < nn_indices.size (); ++nn_index_i)
187  {
188  float dist = nn_distances[nn_index_i];
189  float theta_i = std::exp ( (-1) * dist / scale_squared_);
190  theta_normalization_factor += theta_i;
191 
192  average_normal += theta_i * (*normals_)[nn_indices[nn_index_i]].getNormalVector4fMap ();
193  theta[nn_index_i] = theta_i;
194  }
195  average_normal /= theta_normalization_factor;
196  average_normal(3) = 0.0f;
197  average_normal.normalize ();
198 
199  // find minimum along the normal
200  float e_residual_along_normal = 2, last_e_residual_along_normal = 3;
201  int small_iterations = 0;
202  int max_small_iterations = 10;
203  while ( std::fabs (e_residual_along_normal) < std::fabs (last_e_residual_along_normal) &&
204  small_iterations < max_small_iterations)
205  {
206  small_iterations ++;
207 
208  e_residual_along_normal = 0.0f;
209  for (std::size_t nn_index_i = 0; nn_index_i < nn_indices.size (); ++nn_index_i)
210  {
211  Eigen::Vector4f neighbor = (*input_)[nn_indices[nn_index_i]].getVector4fMap ();
212  neighbor(3) = 0.0f;
213  float dot_product = average_normal.dot (neighbor - result_point);
214  e_residual_along_normal += theta[nn_index_i] * dot_product;
215  }
216  e_residual_along_normal /= theta_normalization_factor;
217  if (e_residual_along_normal < 1e-3) break;
218 
219  result_point += e_residual_along_normal * average_normal;
220  }
221 
222 // if (small_iterations == max_small_iterations)
223 // PCL_INFO ("passed the number of small iterations %d\n", small_iterations);
224 
225  last_error_residual = error_residual;
226  error_residual = e_residual_along_normal;
227 
228 // PCL_INFO ("last %f current %f\n", last_error_residual, error_residual);
229  }
230 
231  output_point.x = result_point(0);
232  output_point.y = result_point(1);
233  output_point.z = result_point(2);
234  output_normal = (*normals_)[point_index];
235 
236  if (big_iterations == max_big_iterations)
237  PCL_DEBUG ("[pcl::SurfelSmoothing::smoothPoint] Passed the number of BIG iterations: %d\n", big_iterations);
238 }
239 
240 
241 //////////////////////////////////////////////////////////////////////////////////////////////
242 template <typename PointT, typename PointNT> void
244  NormalCloudPtr &output_normals)
245 {
246  if (!initCompute ())
247  {
248  PCL_ERROR ("[pcl::SurfelSmoothing::computeSmoothedCloud]: SurfelSmoothing not initialized properly, skipping computeSmoothedCloud ().\n");
249  return;
250  }
251 
252  tree_->setInputCloud (input_);
253 
254  output_positions->header = input_->header;
255  output_positions->height = input_->height;
256  output_positions->width = input_->width;
257 
258  output_normals->header = input_->header;
259  output_normals->height = input_->height;
260  output_normals->width = input_->width;
261 
262  output_positions->points.resize (input_->size ());
263  output_normals->points.resize (input_->size ());
264  for (std::size_t i = 0; i < input_->size (); ++i)
265  {
266  smoothPoint (i, (*output_positions)[i], (*output_normals)[i]);
267  }
268 }
269 
270 //////////////////////////////////////////////////////////////////////////////////////////////
271 template <typename PointT, typename PointNT> void
273  NormalCloudPtr &cloud2_normals,
274  pcl::IndicesPtr &output_features)
275 {
276  if (interm_cloud_->size () != cloud2->size () ||
277  cloud2->size () != cloud2_normals->size ())
278  {
279  PCL_ERROR ("[pcl::SurfelSmoothing::extractSalientFeaturesBetweenScales]: Number of points in the clouds does not match.\n");
280  return;
281  }
282 
283  std::vector<float> diffs (cloud2->size ());
284  for (std::size_t i = 0; i < cloud2->size (); ++i)
285  diffs[i] = (*cloud2_normals)[i].getNormalVector4fMap ().dot ((*cloud2)[i].getVector4fMap () -
286  (*interm_cloud_)[i].getVector4fMap ());
287 
288  pcl::Indices nn_indices;
289  std::vector<float> nn_distances;
290 
291  output_features->resize (cloud2->size ());
292  for (int point_i = 0; point_i < static_cast<int> (cloud2->size ()); ++point_i)
293  {
294  // Get neighbors
295  tree_->radiusSearch (point_i, scale_, nn_indices, nn_distances);
296 
297  bool largest = true;
298  bool smallest = true;
299  for (const auto &nn_index : nn_indices)
300  {
301  if (diffs[point_i] < diffs[nn_index])
302  largest = false;
303  else
304  smallest = false;
305  }
306 
307  if (largest || smallest)
308  (*output_features)[point_i] = point_i;
309  }
310 }
311 
312 
313 
314 #define PCL_INSTANTIATE_SurfelSmoothing(PointT,PointNT) template class PCL_EXPORTS pcl::SurfelSmoothing<PointT, PointNT>;
315 
316 #endif /* PCL_SURFACE_IMPL_SURFEL_SMOOTHING_H_ */
PCL base class.
Definition: pcl_base.h:70
PointCloud represents the base class in PCL for storing collections of 3D points.
Definition: point_cloud.h:174
typename pcl::PointCloud< PointNT >::Ptr NormalCloudPtr
void extractSalientFeaturesBetweenScales(PointCloudInPtr &cloud2, NormalCloudPtr &cloud2_normals, pcl::IndicesPtr &output_features)
float smoothCloudIteration(PointCloudInPtr &output_positions, NormalCloudPtr &output_normals)
void smoothPoint(std::size_t &point_index, PointT &output_point, PointNT &output_normal)
void computeSmoothedCloud(PointCloudInPtr &output_positions, NormalCloudPtr &output_normals)
typename pcl::PointCloud< PointT >::Ptr PointCloudInPtr
Define standard C methods to do distance calculations.
@ radius_search
The search method will mainly be used for radiusSearch.
float squaredEuclideanDistance(const PointType1 &p1, const PointType2 &p2)
Calculate the squared euclidean distance between the two given points.
Definition: distances.h:182
IndicesAllocator<> Indices
Type used for indices in PCL.
Definition: types.h:133
shared_ptr< Indices > IndicesPtr
Definition: pcl_base.h:58
A point structure representing Euclidean xyz coordinates, and the RGB color.