Point Cloud Library (PCL)  1.15.1-dev
seeded_hue_segmentation.hpp
1 /*
2  * Software License Agreement (BSD License)
3  *
4  * Point Cloud Library (PCL) - www.pointclouds.org
5  * Copyright (c) 2010-2011, Willow Garage, Inc.
6  *
7  * All rights reserved.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  *
13  * * Redistributions of source code must retain the above copyright
14  * notice, this list of conditions and the following disclaimer.
15  * * Redistributions in binary form must reproduce the above
16  * copyright notice, this list of conditions and the following
17  * disclaimer in the documentation and/or other materials provided
18  * with the distribution.
19  * * Neither the name of the copyright holder(s) nor the names of its
20  * contributors may be used to endorse or promote products derived
21  * from this software without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
24  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
25  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
26  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
27  * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
28  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
29  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
30  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
31  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
33  * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
34  * POSSIBILITY OF SUCH DAMAGE.
35  *
36  * $id $
37  */
38 
39 #ifndef PCL_SEGMENTATION_IMPL_SEEDED_HUE_SEGMENTATION_H_
40 #define PCL_SEGMENTATION_IMPL_SEEDED_HUE_SEGMENTATION_H_
41 
42 #include <pcl/segmentation/seeded_hue_segmentation.h>
43 #include <pcl/console/print.h> // for PCL_ERROR
44 #include <pcl/search/auto.h>
45 
46 //////////////////////////////////////////////////////////////////////////////////////////////
47 void
50  float tolerance,
51  PointIndices &indices_in,
52  PointIndices &indices_out,
53  float delta_hue)
54 {
55  if (tree->getInputCloud ()->size () != cloud.size ())
56  {
57  PCL_ERROR("[pcl::seededHueSegmentation] Tree built for a different point cloud "
58  "dataset (%zu) than the input cloud (%zu)!\n",
59  static_cast<std::size_t>(tree->getInputCloud()->size()),
60  static_cast<std::size_t>(cloud.size()));
61  return;
62  }
63  // If tree gives sorted results, we can skip the first one because it is the query point itself
64  const std::size_t nn_start_idx = tree->getSortedResults () ? 1 : 0;
65  // Create a bool vector of processed point indices, and initialize it to false
66  std::vector<bool> processed (cloud.size (), false);
67 
68  Indices nn_indices;
69  std::vector<float> nn_distances;
70 
71  // Process all points in the indices vector
72  for (const auto &i : indices_in.indices)
73  {
74  if (processed[i])
75  continue;
76 
77  processed[i] = true;
78 
79  Indices seed_queue;
80  int sq_idx = 0;
81  seed_queue.push_back (i);
82 
83  PointXYZRGB p;
84  p = cloud[i];
85  PointXYZHSV h;
86  PointXYZRGBtoXYZHSV(p, h);
87 
88  while (sq_idx < static_cast<int> (seed_queue.size ()))
89  {
90  int ret = tree->radiusSearch (seed_queue[sq_idx], tolerance, nn_indices, nn_distances, std::numeric_limits<int>::max());
91  if(ret == -1)
92  PCL_ERROR("[pcl::seededHueSegmentation] radiusSearch returned error code -1\n");
93  // Search for sq_idx
94  if (!ret)
95  {
96  sq_idx++;
97  continue;
98  }
99 
100  for (std::size_t j = nn_start_idx; j < nn_indices.size (); ++j)
101  {
102  if (processed[nn_indices[j]]) // Has this point been processed before ?
103  continue;
104 
105  PointXYZRGB p_l;
106  p_l = cloud[nn_indices[j]];
107  PointXYZHSV h_l;
108  PointXYZRGBtoXYZHSV(p_l, h_l);
109 
110  if (std::fabs(h_l.h - h.h) < delta_hue)
111  {
112  seed_queue.push_back (nn_indices[j]);
113  processed[nn_indices[j]] = true;
114  }
115  }
116 
117  sq_idx++;
118  }
119  // Copy the seed queue into the output indices
120  for (const auto &l : seed_queue)
121  indices_out.indices.push_back(l);
122  }
123  // This is purely esthetical, can be removed for speed purposes
124  std::sort (indices_out.indices.begin (), indices_out.indices.end ());
125 }
126 //////////////////////////////////////////////////////////////////////////////////////////////
127 void
130  float tolerance,
131  PointIndices &indices_in,
132  PointIndices &indices_out,
133  float delta_hue)
134 {
135  if (tree->getInputCloud ()->size () != cloud.size ())
136  {
137  PCL_ERROR("[pcl::seededHueSegmentation] Tree built for a different point cloud "
138  "dataset (%zu) than the input cloud (%zu)!\n",
139  static_cast<std::size_t>(tree->getInputCloud()->size()),
140  static_cast<std::size_t>(cloud.size()));
141  return;
142  }
143  // If tree gives sorted results, we can skip the first one because it is the query point itself
144  const std::size_t nn_start_idx = tree->getSortedResults () ? 1 : 0;
145  // Create a bool vector of processed point indices, and initialize it to false
146  std::vector<bool> processed (cloud.size (), false);
147 
148  Indices nn_indices;
149  std::vector<float> nn_distances;
150 
151  // Process all points in the indices vector
152  for (const auto &i : indices_in.indices)
153  {
154  if (processed[i])
155  continue;
156 
157  processed[i] = true;
158 
159  Indices seed_queue;
160  int sq_idx = 0;
161  seed_queue.push_back (i);
162 
163  PointXYZRGB p;
164  p = cloud[i];
165  PointXYZHSV h;
166  PointXYZRGBtoXYZHSV(p, h);
167 
168  while (sq_idx < static_cast<int> (seed_queue.size ()))
169  {
170  int ret = tree->radiusSearch (seed_queue[sq_idx], tolerance, nn_indices, nn_distances, std::numeric_limits<int>::max());
171  if(ret == -1)
172  PCL_ERROR("[pcl::seededHueSegmentation] radiusSearch returned error code -1\n");
173  // Search for sq_idx
174  if (!ret)
175  {
176  sq_idx++;
177  continue;
178  }
179  for (std::size_t j = nn_start_idx; j < nn_indices.size (); ++j)
180  {
181  if (processed[nn_indices[j]]) // Has this point been processed before ?
182  continue;
183 
184  PointXYZRGB p_l;
185  p_l = cloud[nn_indices[j]];
186  PointXYZHSV h_l;
187  PointXYZRGBtoXYZHSV(p_l, h_l);
188 
189  if (std::fabs(h_l.h - h.h) < delta_hue)
190  {
191  seed_queue.push_back (nn_indices[j]);
192  processed[nn_indices[j]] = true;
193  }
194  }
195 
196  sq_idx++;
197  }
198  // Copy the seed queue into the output indices
199  for (const auto &l : seed_queue)
200  indices_out.indices.push_back(l);
201  }
202  // This is purely esthetical, can be removed for speed purposes
203  std::sort (indices_out.indices.begin (), indices_out.indices.end ());
204 }
205 //////////////////////////////////////////////////////////////////////////////////////////////
206 //////////////////////////////////////////////////////////////////////////////////////////////
207 
208 void
210 {
211  if (!initCompute () ||
212  (input_ && input_->points.empty ()) ||
213  (indices_ && indices_->empty ()))
214  {
215  indices_out.indices.clear ();
216  return;
217  }
218 
219  // Initialize the spatial locator
220  if (!tree_)
221  {
222  tree_.reset (pcl::search::autoSelectMethod<pcl::PointXYZRGB> (input_, false, pcl::search::Purpose::radius_search));
223  }
224  else
225  // Send the input dataset to the spatial locator
226  tree_->setInputCloud (input_);
227 
228  seededHueSegmentation (*input_, tree_, static_cast<float> (cluster_tolerance_), indices_in, indices_out, delta_hue_);
229  deinitCompute ();
230 }
231 
232 #endif // PCL_EXTRACT_CLUSTERS_IMPL_H_
PointCloudConstPtr input_
The input point cloud dataset.
Definition: pcl_base.h:147
IndicesPtr indices_
A pointer to the vector of point indices to use.
Definition: pcl_base.h:150
bool initCompute()
This method should get called before starting the actual computation.
Definition: pcl_base.hpp:138
bool deinitCompute()
This method should get called after finishing the actual computation.
Definition: pcl_base.hpp:175
PointCloud represents the base class in PCL for storing collections of 3D points.
Definition: point_cloud.h:174
std::size_t size() const
Definition: point_cloud.h:444
KdTreePtr tree_
A pointer to the spatial search object.
float delta_hue_
The allowed difference on the hue.
double cluster_tolerance_
The spatial cluster tolerance as a measure in the L2 Euclidean space.
void segment(PointIndices &indices_in, PointIndices &indices_out)
Cluster extraction in a PointCloud given by <setInputCloud (), setIndices ()>
virtual bool getSortedResults()
Gets whether the results should be sorted (ascending in the distance) or not Otherwise the results ma...
Definition: search.hpp:68
shared_ptr< pcl::search::Search< PointT > > Ptr
Definition: search.h:81
virtual PointCloudConstPtr getInputCloud() const
Get a pointer to the input point cloud dataset.
Definition: search.h:124
virtual int radiusSearch(const PointT &point, double radius, Indices &k_indices, std::vector< float > &k_sqr_distances, unsigned int max_nn=0) const =0
Search for all the nearest neighbors of the query point in a given radius.
void seededHueSegmentation(const PointCloud< PointXYZRGB > &cloud, const search::Search< PointXYZRGB >::Ptr &tree, float tolerance, PointIndices &indices_in, PointIndices &indices_out, float delta_hue=0.0)
Decompose a region of space into clusters based on the Euclidean distance between points.
@ radius_search
The search method will mainly be used for radiusSearch.
void PointXYZRGBtoXYZHSV(const PointXYZRGB &in, PointXYZHSV &out)
Convert a XYZRGB point type to a XYZHSV.
IndicesAllocator<> Indices
Type used for indices in PCL.
Definition: types.h:133
A point structure representing Euclidean xyz coordinates, and the RGB color.