Point Cloud Library (PCL)  1.14.1-dev
sac_model_circle3d.hpp
1 /*
2  * Software License Agreement (BSD License)
3  *
4  * Point Cloud Library (PCL) - www.pointclouds.org
5  * Copyright (c) 2012-, Open Perception, Inc.
6  *
7  * All rights reserved.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  *
13  * * Redistributions of source code must retain the above copyright
14  * notice, this list of conditions and the following disclaimer.
15  * * Redistributions in binary form must reproduce the above
16  * copyright notice, this list of conditions and the following
17  * disclaimer in the documentation and/or other materials provided
18  * with the distribution.
19  * * Neither the name of the copyright holder(s) nor the names of its
20  * contributors may be used to endorse or promote products derived
21  * from this software without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
24  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
25  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
26  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
27  * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
28  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
29  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
30  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
31  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
33  * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
34  * POSSIBILITY OF SUCH DAMAGE.
35  *
36  *
37  */
38 
39 #ifndef PCL_SAMPLE_CONSENSUS_IMPL_SAC_MODEL_CIRCLE_3D_HPP_
40 #define PCL_SAMPLE_CONSENSUS_IMPL_SAC_MODEL_CIRCLE_3D_HPP_
41 
42 #include <limits>
43 
44 #include <unsupported/Eigen/NonLinearOptimization> // for LevenbergMarquardt
45 #include <pcl/sample_consensus/sac_model_circle3d.h>
46 #include <pcl/common/concatenate.h>
47 
48 //////////////////////////////////////////////////////////////////////////
49 template <typename PointT> bool
51  const Indices &samples) const
52 {
53  if (samples.size () != sample_size_)
54  {
55  PCL_ERROR ("[pcl::SampleConsensusModelCircle3D::isSampleGood] Wrong number of samples (is %lu, should be %lu)!\n", samples.size (), sample_size_);
56  return (false);
57  }
58 
59  // Double precision here follows computeModelCoefficients, which means we
60  // can't use getVector3fMap-accessor to make our lives easier.
61  Eigen::Vector3d p0 ((*input_)[samples[0]].x, (*input_)[samples[0]].y, (*input_)[samples[0]].z);
62  Eigen::Vector3d p1 ((*input_)[samples[1]].x, (*input_)[samples[1]].y, (*input_)[samples[1]].z);
63  Eigen::Vector3d p2 ((*input_)[samples[2]].x, (*input_)[samples[2]].y, (*input_)[samples[2]].z);
64 
65  // Check if the squared norm of the cross-product is non-zero, otherwise
66  // common_helper_vec, which plays an important role in computeModelCoefficients,
67  // would likely be ill-formed.
68  if ((p1 - p0).cross(p1 - p2).squaredNorm() < Eigen::NumTraits<double>::dummy_precision ())
69  {
70  PCL_ERROR ("[pcl::SampleConsensusModelCircle3D::isSampleGood] Sample points too similar or collinear!\n");
71  return (false);
72  }
73 
74  return (true);
75 }
76 
77 //////////////////////////////////////////////////////////////////////////
78 template <typename PointT> bool
79 pcl::SampleConsensusModelCircle3D<PointT>::computeModelCoefficients (const Indices &samples, Eigen::VectorXf &model_coefficients) const
80 {
81  if (samples.size () != sample_size_)
82  {
83  PCL_ERROR ("[pcl::SampleConsensusModelCircle3D::computeModelCoefficients] Invalid set of samples given (%lu)!\n", samples.size ());
84  return (false);
85  }
86 
87  model_coefficients.resize (model_size_); //needing 7 coefficients: centerX, centerY, centerZ, radius, normalX, normalY, normalZ
88 
89  Eigen::Vector3d p0 ((*input_)[samples[0]].x, (*input_)[samples[0]].y, (*input_)[samples[0]].z);
90  Eigen::Vector3d p1 ((*input_)[samples[1]].x, (*input_)[samples[1]].y, (*input_)[samples[1]].z);
91  Eigen::Vector3d p2 ((*input_)[samples[2]].x, (*input_)[samples[2]].y, (*input_)[samples[2]].z);
92 
93 
94  Eigen::Vector3d helper_vec01 = p0 - p1;
95  Eigen::Vector3d helper_vec02 = p0 - p2;
96  Eigen::Vector3d helper_vec10 = p1 - p0;
97  Eigen::Vector3d helper_vec12 = p1 - p2;
98  Eigen::Vector3d helper_vec20 = p2 - p0;
99  Eigen::Vector3d helper_vec21 = p2 - p1;
100 
101  Eigen::Vector3d common_helper_vec = helper_vec01.cross (helper_vec12);
102 
103  // The same check is implemented in isSampleGood, so be sure to look there too
104  // if you find the need to change something here.
105  if (common_helper_vec.squaredNorm() < Eigen::NumTraits<double>::dummy_precision ())
106  {
107  PCL_ERROR ("[pcl::SampleConsensusModelCircle3D::computeModelCoefficients] Sample points too similar or collinear!\n");
108  return (false);
109  }
110 
111  double commonDividend = 2.0 * common_helper_vec.squaredNorm ();
112 
113  double alpha = (helper_vec12.squaredNorm () * helper_vec01.dot (helper_vec02)) / commonDividend;
114  double beta = (helper_vec02.squaredNorm () * helper_vec10.dot (helper_vec12)) / commonDividend;
115  double gamma = (helper_vec01.squaredNorm () * helper_vec20.dot (helper_vec21)) / commonDividend;
116 
117  Eigen::Vector3d circle_center = alpha * p0 + beta * p1 + gamma * p2;
118 
119  Eigen::Vector3d circle_radiusVector = circle_center - p0;
120  double circle_radius = circle_radiusVector.norm ();
121  Eigen::Vector3d circle_normal = common_helper_vec.normalized ();
122 
123  model_coefficients[0] = static_cast<float> (circle_center[0]);
124  model_coefficients[1] = static_cast<float> (circle_center[1]);
125  model_coefficients[2] = static_cast<float> (circle_center[2]);
126  model_coefficients[3] = static_cast<float> (circle_radius);
127  model_coefficients[4] = static_cast<float> (circle_normal[0]);
128  model_coefficients[5] = static_cast<float> (circle_normal[1]);
129  model_coefficients[6] = static_cast<float> (circle_normal[2]);
130 
131  PCL_DEBUG ("[pcl::SampleConsensusModelCircle3D::computeModelCoefficients] Model is (%g,%g,%g,%g,%g,%g,%g).\n",
132  model_coefficients[0], model_coefficients[1], model_coefficients[2], model_coefficients[3],
133  model_coefficients[4], model_coefficients[5], model_coefficients[6]);
134  return (true);
135 }
136 
137 //////////////////////////////////////////////////////////////////////////
138 template <typename PointT> void
139 pcl::SampleConsensusModelCircle3D<PointT>::getDistancesToModel (const Eigen::VectorXf &model_coefficients, std::vector<double> &distances) const
140 {
141  // Check if the model is valid given the user constraints
142  if (!isModelValid (model_coefficients))
143  {
144  distances.clear ();
145  return;
146  }
147  distances.resize (indices_->size ());
148 
149  // Iterate through the 3d points and calculate the distances from them to the sphere
150  for (std::size_t i = 0; i < indices_->size (); ++i)
151  // Calculate the distance from the point to the circle:
152  // 1. calculate intersection point of the plane in which the circle lies and the
153  // line from the sample point with the direction of the plane normal (projected point)
154  // 2. calculate the intersection point of the line from the circle center to the projected point
155  // with the circle
156  // 3. calculate distance from corresponding point on the circle to the sample point
157  {
158  // what i have:
159  // P : Sample Point
160  Eigen::Vector3d P ((*input_)[(*indices_)[i]].x, (*input_)[(*indices_)[i]].y, (*input_)[(*indices_)[i]].z);
161  // C : Circle Center
162  Eigen::Vector3d C (model_coefficients[0], model_coefficients[1], model_coefficients[2]);
163  // N : Circle (Plane) Normal
164  Eigen::Vector3d N (model_coefficients[4], model_coefficients[5], model_coefficients[6]);
165  // r : Radius
166  double r = model_coefficients[3];
167 
168  Eigen::Vector3d helper_vectorPC = P - C;
169  // 1.1. get line parameter
170  double lambda = (helper_vectorPC.dot (N)) / N.squaredNorm ();
171 
172  // Projected Point on plane
173  Eigen::Vector3d P_proj = P + lambda * N;
174  Eigen::Vector3d helper_vectorP_projC = P_proj - C;
175 
176  // K : Point on Circle
177  Eigen::Vector3d K = C + r * helper_vectorP_projC.normalized ();
178  Eigen::Vector3d distanceVector = P - K;
179 
180  distances[i] = distanceVector.norm ();
181  }
182 }
183 
184 //////////////////////////////////////////////////////////////////////////
185 template <typename PointT> void
187  const Eigen::VectorXf &model_coefficients, const double threshold,
188  Indices &inliers)
189 {
190  // Check if the model is valid given the user constraints
191  if (!isModelValid (model_coefficients))
192  {
193  inliers.clear ();
194  return;
195  }
196  inliers.clear ();
197  error_sqr_dists_.clear ();
198  inliers.reserve (indices_->size ());
199  error_sqr_dists_.reserve (indices_->size ());
200 
201  const auto squared_threshold = threshold * threshold;
202  // Iterate through the 3d points and calculate the distances from them to the sphere
203  for (std::size_t i = 0; i < indices_->size (); ++i)
204  {
205  // what i have:
206  // P : Sample Point
207  Eigen::Vector3d P ((*input_)[(*indices_)[i]].x, (*input_)[(*indices_)[i]].y, (*input_)[(*indices_)[i]].z);
208  // C : Circle Center
209  Eigen::Vector3d C (model_coefficients[0], model_coefficients[1], model_coefficients[2]);
210  // N : Circle (Plane) Normal
211  Eigen::Vector3d N (model_coefficients[4], model_coefficients[5], model_coefficients[6]);
212  // r : Radius
213  double r = model_coefficients[3];
214 
215  Eigen::Vector3d helper_vectorPC = P - C;
216  // 1.1. get line parameter
217  double lambda = (-(helper_vectorPC.dot (N))) / N.dot (N);
218  // Projected Point on plane
219  Eigen::Vector3d P_proj = P + lambda * N;
220  Eigen::Vector3d helper_vectorP_projC = P_proj - C;
221 
222  // K : Point on Circle
223  Eigen::Vector3d K = C + r * helper_vectorP_projC.normalized ();
224  Eigen::Vector3d distanceVector = P - K;
225 
226  const double sqr_dist = distanceVector.squaredNorm ();
227  if (sqr_dist < squared_threshold)
228  {
229  // Returns the indices of the points whose distances are smaller than the threshold
230  inliers.push_back ((*indices_)[i]);
231  error_sqr_dists_.push_back (sqr_dist);
232  }
233  }
234 }
235 
236 //////////////////////////////////////////////////////////////////////////
237 template <typename PointT> std::size_t
239  const Eigen::VectorXf &model_coefficients, const double threshold) const
240 {
241  // Check if the model is valid given the user constraints
242  if (!isModelValid (model_coefficients))
243  return (0);
244  std::size_t nr_p = 0;
245 
246  const auto squared_threshold = threshold * threshold;
247  // Iterate through the 3d points and calculate the distances from them to the sphere
248  for (std::size_t i = 0; i < indices_->size (); ++i)
249  {
250  // what i have:
251  // P : Sample Point
252  Eigen::Vector3d P ((*input_)[(*indices_)[i]].x, (*input_)[(*indices_)[i]].y, (*input_)[(*indices_)[i]].z);
253  // C : Circle Center
254  Eigen::Vector3d C (model_coefficients[0], model_coefficients[1], model_coefficients[2]);
255  // N : Circle (Plane) Normal
256  Eigen::Vector3d N (model_coefficients[4], model_coefficients[5], model_coefficients[6]);
257  // r : Radius
258  double r = model_coefficients[3];
259 
260  Eigen::Vector3d helper_vectorPC = P - C;
261  // 1.1. get line parameter
262  double lambda = (-(helper_vectorPC.dot (N))) / N.dot (N);
263 
264  // Projected Point on plane
265  Eigen::Vector3d P_proj = P + lambda * N;
266  Eigen::Vector3d helper_vectorP_projC = P_proj - C;
267 
268  // K : Point on Circle
269  Eigen::Vector3d K = C + r * helper_vectorP_projC.normalized ();
270  Eigen::Vector3d distanceVector = P - K;
271 
272  if (distanceVector.squaredNorm () < squared_threshold)
273  nr_p++;
274  }
275  return (nr_p);
276 }
277 
278 //////////////////////////////////////////////////////////////////////////
279 template <typename PointT> void
281  const Indices &inliers,
282  const Eigen::VectorXf &model_coefficients,
283  Eigen::VectorXf &optimized_coefficients) const
284 {
285  optimized_coefficients = model_coefficients;
286 
287  // Needs a set of valid model coefficients
288  if (!isModelValid (model_coefficients))
289  {
290  PCL_ERROR ("[pcl::SampleConsensusModelCircle3D::optimizeModelCoefficients] Given model is invalid!\n");
291  return;
292  }
293 
294  // Need more than the minimum sample size to make a difference
295  if (inliers.size () <= sample_size_)
296  {
297  PCL_ERROR ("[pcl::SampleConsensusModelCircle3D::optimizeModelCoefficients] Not enough inliers to refine/optimize the model's coefficients (%lu)! Returning the same coefficients.\n", inliers.size ());
298  return;
299  }
300 
301  OptimizationFunctor functor (this, inliers);
302  Eigen::NumericalDiff<OptimizationFunctor> num_diff (functor);
303  Eigen::LevenbergMarquardt<Eigen::NumericalDiff<OptimizationFunctor>, double> lm (num_diff);
304  Eigen::VectorXd coeff = optimized_coefficients.cast<double>();
305  int info = lm.minimize (coeff);
306  coeff.tail(3).normalize(); // normalize the cylinder axis
307  for (Eigen::Index i = 0; i < coeff.size (); ++i)
308  optimized_coefficients[i] = static_cast<float> (coeff[i]);
309 
310  // Compute the L2 norm of the residuals
311  PCL_DEBUG ("[pcl::SampleConsensusModelCircle3D::optimizeModelCoefficients] LM solver finished with exit code %i, having a residual norm of %g. \nInitial solution: %g %g %g %g %g %g %g \nFinal solution: %g %g %g %g %g %g %g\n",
312  info, lm.fvec.norm (), model_coefficients[0], model_coefficients[1], model_coefficients[2], model_coefficients[3], model_coefficients[4], model_coefficients[5], model_coefficients[6], optimized_coefficients[0], optimized_coefficients[1], optimized_coefficients[2], optimized_coefficients[3], optimized_coefficients[4], optimized_coefficients[5], optimized_coefficients[6]);
313 }
314 
315 //////////////////////////////////////////////////////////////////////////
316 template <typename PointT> void
318  const Indices &inliers, const Eigen::VectorXf &model_coefficients,
319  PointCloud &projected_points, bool copy_data_fields) const
320 {
321  // Needs a valid set of model coefficients
322  if (!isModelValid (model_coefficients))
323  {
324  PCL_ERROR ("[pcl::SampleConsensusModelCircle3D::projectPoints] Given model is invalid!\n");
325  return;
326  }
327 
328  projected_points.header = input_->header;
329  projected_points.is_dense = input_->is_dense;
330 
331  // Copy all the data fields from the input cloud to the projected one?
332  if (copy_data_fields)
333  {
334  // Allocate enough space and copy the basics
335  projected_points.resize (input_->size ());
336  projected_points.width = input_->width;
337  projected_points.height = input_->height;
338 
339  using FieldList = typename pcl::traits::fieldList<PointT>::type;
340  // Iterate over each point
341  for (std::size_t i = 0; i < projected_points.size (); ++i)
342  // Iterate over each dimension
343  pcl::for_each_type <FieldList> (NdConcatenateFunctor <PointT, PointT> ((*input_)[i], projected_points[i]));
344 
345  // Iterate through the 3d points and calculate the distances from them to the plane
346  for (const auto &inlier : inliers)
347  {
348  // what i have:
349  // P : Sample Point
350  Eigen::Vector3d P ((*input_)[inlier].x, (*input_)[inlier].y, (*input_)[inlier].z);
351  // C : Circle Center
352  Eigen::Vector3d C (model_coefficients[0], model_coefficients[1], model_coefficients[2]);
353  // N : Circle (Plane) Normal
354  Eigen::Vector3d N (model_coefficients[4], model_coefficients[5], model_coefficients[6]);
355  // r : Radius
356  double r = model_coefficients[3];
357 
358  Eigen::Vector3d helper_vectorPC = P - C;
359  // 1.1. get line parameter
360  //float lambda = (helper_vectorPC.dot(N)) / N.squaredNorm() ;
361  double lambda = (-(helper_vectorPC.dot (N))) / N.dot (N);
362  // Projected Point on plane
363  Eigen::Vector3d P_proj = P + lambda * N;
364  Eigen::Vector3d helper_vectorP_projC = P_proj - C;
365 
366  // K : Point on Circle
367  Eigen::Vector3d K = C + r * helper_vectorP_projC.normalized ();
368 
369  projected_points[inlier].x = static_cast<float> (K[0]);
370  projected_points[inlier].y = static_cast<float> (K[1]);
371  projected_points[inlier].z = static_cast<float> (K[2]);
372  }
373  }
374  else
375  {
376  // Allocate enough space and copy the basics
377  projected_points.resize (inliers.size ());
378  projected_points.width = inliers.size ();
379  projected_points.height = 1;
380 
381  using FieldList = typename pcl::traits::fieldList<PointT>::type;
382  // Iterate over each point
383  for (std::size_t i = 0; i < inliers.size (); ++i)
384  // Iterate over each dimension
385  pcl::for_each_type <FieldList> (NdConcatenateFunctor <PointT, PointT> ((*input_)[inliers[i]], projected_points[i]));
386 
387  // Iterate through the 3d points and calculate the distances from them to the plane
388  for (std::size_t i = 0; i < inliers.size (); ++i)
389  {
390  // what i have:
391  // P : Sample Point
392  Eigen::Vector3d P ((*input_)[inliers[i]].x, (*input_)[inliers[i]].y, (*input_)[inliers[i]].z);
393  // C : Circle Center
394  Eigen::Vector3d C (model_coefficients[0], model_coefficients[1], model_coefficients[2]);
395  // N : Circle (Plane) Normal
396  Eigen::Vector3d N (model_coefficients[4], model_coefficients[5], model_coefficients[6]);
397  // r : Radius
398  double r = model_coefficients[3];
399 
400  Eigen::Vector3d helper_vectorPC = P - C;
401  // 1.1. get line parameter
402  double lambda = (-(helper_vectorPC.dot (N))) / N.dot (N);
403  // Projected Point on plane
404  Eigen::Vector3d P_proj = P + lambda * N;
405  Eigen::Vector3d helper_vectorP_projC = P_proj - C;
406 
407  // K : Point on Circle
408  Eigen::Vector3d K = C + r * helper_vectorP_projC.normalized ();
409 
410  projected_points[i].x = static_cast<float> (K[0]);
411  projected_points[i].y = static_cast<float> (K[1]);
412  projected_points[i].z = static_cast<float> (K[2]);
413  }
414  }
415 }
416 
417 //////////////////////////////////////////////////////////////////////////
418 template <typename PointT> bool
420  const std::set<index_t> &indices,
421  const Eigen::VectorXf &model_coefficients,
422  const double threshold) const
423 {
424  // Needs a valid model coefficients
425  if (!isModelValid (model_coefficients))
426  {
427  PCL_ERROR ("[pcl::SampleConsensusModelCircle3D::doSamplesVerifyModel] Given model is invalid!\n");
428  return (false);
429  }
430 
431  const auto squared_threshold = threshold * threshold;
432  for (const auto &index : indices)
433  {
434  // Calculate the distance from the point to the sphere as the difference between
435  //dist(point,sphere_origin) and sphere_radius
436 
437  // what i have:
438  // P : Sample Point
439  Eigen::Vector3d P ((*input_)[index].x, (*input_)[index].y, (*input_)[index].z);
440  // C : Circle Center
441  Eigen::Vector3d C (model_coefficients[0], model_coefficients[1], model_coefficients[2]);
442  // N : Circle (Plane) Normal
443  Eigen::Vector3d N (model_coefficients[4], model_coefficients[5], model_coefficients[6]);
444  // r : Radius
445  double r = model_coefficients[3];
446  Eigen::Vector3d helper_vectorPC = P - C;
447  // 1.1. get line parameter
448  double lambda = (-(helper_vectorPC.dot (N))) / N.dot (N);
449  // Projected Point on plane
450  Eigen::Vector3d P_proj = P + lambda * N;
451  Eigen::Vector3d helper_vectorP_projC = P_proj - C;
452 
453  // K : Point on Circle
454  Eigen::Vector3d K = C + r * helper_vectorP_projC.normalized ();
455  Eigen::Vector3d distanceVector = P - K;
456 
457  if (distanceVector.squaredNorm () > squared_threshold)
458  return (false);
459  }
460  return (true);
461 }
462 
463 //////////////////////////////////////////////////////////////////////////
464 template <typename PointT> bool
465 pcl::SampleConsensusModelCircle3D<PointT>::isModelValid (const Eigen::VectorXf &model_coefficients) const
466 {
467  if (!SampleConsensusModel<PointT>::isModelValid (model_coefficients))
468  return (false);
469 
470  if (radius_min_ != std::numeric_limits<double>::lowest() && model_coefficients[3] < radius_min_)
471  {
472  PCL_DEBUG ("[pcl::SampleConsensusModelCircle3D::isModelValid] Radius of circle is too small: should be larger than %g, but is %g.\n",
473  radius_min_, model_coefficients[3]);
474  return (false);
475  }
476  if (radius_max_ != std::numeric_limits<double>::max() && model_coefficients[3] > radius_max_)
477  {
478  PCL_DEBUG ("[pcl::SampleConsensusModelCircle3D::isModelValid] Radius of circle is too big: should be smaller than %g, but is %g.\n",
479  radius_max_, model_coefficients[3]);
480  return (false);
481  }
482 
483  return (true);
484 }
485 
486 #define PCL_INSTANTIATE_SampleConsensusModelCircle3D(T) template class PCL_EXPORTS pcl::SampleConsensusModelCircle3D<T>;
487 
488 #endif // PCL_SAMPLE_CONSENSUS_IMPL_SAC_MODEL_CIRCLE3D_HPP_
489 
PointCloud represents the base class in PCL for storing collections of 3D points.
Definition: point_cloud.h:173
bool is_dense
True if no points are invalid (e.g., have NaN or Inf values in any of their floating point fields).
Definition: point_cloud.h:403
void resize(std::size_t count)
Resizes the container to contain count elements.
Definition: point_cloud.h:462
std::uint32_t width
The point cloud width (if organized as an image-structure).
Definition: point_cloud.h:398
pcl::PCLHeader header
The point cloud header.
Definition: point_cloud.h:392
std::uint32_t height
The point cloud height (if organized as an image-structure).
Definition: point_cloud.h:400
std::size_t size() const
Definition: point_cloud.h:443
bool isModelValid(const Eigen::VectorXf &model_coefficients) const override
Check whether a model is valid given the user constraints.
bool doSamplesVerifyModel(const std::set< index_t > &indices, const Eigen::VectorXf &model_coefficients, const double threshold) const override
Verify whether a subset of indices verifies the given 3d circle model coefficients.
bool isSampleGood(const Indices &samples) const override
Check if a sample of indices results in a good sample of points indices.
void projectPoints(const Indices &inliers, const Eigen::VectorXf &model_coefficients, PointCloud &projected_points, bool copy_data_fields=true) const override
Create a new point cloud with inliers projected onto the 3d circle model.
std::size_t countWithinDistance(const Eigen::VectorXf &model_coefficients, const double threshold) const override
Count all the points which respect the given model coefficients as inliers.
void getDistancesToModel(const Eigen::VectorXf &model_coefficients, std::vector< double > &distances) const override
Compute all distances from the cloud data to a given 3D circle model.
void optimizeModelCoefficients(const Indices &inliers, const Eigen::VectorXf &model_coefficients, Eigen::VectorXf &optimized_coefficients) const override
Recompute the 3d circle coefficients using the given inlier set and return them to the user.
void selectWithinDistance(const Eigen::VectorXf &model_coefficients, const double threshold, Indices &inliers) override
Compute all distances from the cloud data to a given 3D circle model.
bool computeModelCoefficients(const Indices &samples, Eigen::VectorXf &model_coefficients) const override
Check whether the given index samples can form a valid 2D circle model, compute the model coefficient...
SampleConsensusModel represents the base model class.
Definition: sac_model.h:71
@ K
Definition: norms.h:54
IndicesAllocator<> Indices
Type used for indices in PCL.
Definition: types.h:133
Helper functor structure for concatenate.
Definition: concatenate.h:50