Point Cloud Library (PCL)  1.15.1-dev
rsd.h
1 /*
2  * Software License Agreement (BSD License)
3  *
4  * Point Cloud Library (PCL) - www.pointclouds.org
5  * Copyright (c) 2009, Willow Garage, Inc.
6  * Copyright (c) 2012-, Open Perception, Inc.
7  *
8  * All rights reserved.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  *
14  * * Redistributions of source code must retain the above copyright
15  * notice, this list of conditions and the following disclaimer.
16  * * Redistributions in binary form must reproduce the above
17  * copyright notice, this list of conditions and the following
18  * disclaimer in the documentation and/or other materials provided
19  * with the distribution.
20  * * Neither the name of the copyright holder(s) nor the names of its
21  * contributors may be used to endorse or promote products derived
22  * from this software without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
25  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
26  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
27  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
28  * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
29  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
30  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
31  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
32  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
34  * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35  * POSSIBILITY OF SUCH DAMAGE.
36  *
37  * $Id$
38  *
39  */
40 
41 #pragma once
42 
43 #include <pcl/memory.h>
44 #include <pcl/pcl_macros.h>
45 #include <pcl/features/feature.h>
46 #include <pcl/point_types.h> // for Histogram
47 
48 namespace pcl
49 {
50  /** \brief Transform a list of 2D matrices into a point cloud containing the values in a vector (Histogram<N>).
51  * Can be used to transform the 2D histograms obtained in \ref RSDEstimation into a point cloud.
52  * @note The template parameter N should be (greater or) equal to the product of the number of rows and columns.
53  * \param[in] histograms2D the list of neighborhood 2D histograms
54  * \param[out] histogramsPC the dataset containing the linearized matrices
55  * \ingroup features
56  */
57  template <int N> void
58  getFeaturePointCloud (const std::vector<Eigen::MatrixXf, Eigen::aligned_allocator<Eigen::MatrixXf> > &histograms2D, PointCloud<Histogram<N> > &histogramsPC)
59  {
60  histogramsPC.resize (histograms2D.size ());
61  histogramsPC.width = histograms2D.size ();
62  histogramsPC.height = 1;
63  histogramsPC.is_dense = true;
64 
65  const int rows = histograms2D.at(0).rows();
66  const int cols = histograms2D.at(0).cols();
67 
68  typename PointCloud<Histogram<N> >::VectorType::iterator it = histogramsPC.begin ();
69  for (const Eigen::MatrixXf& h : histograms2D)
70  {
71  Eigen::Map<Eigen::MatrixXf> histogram (&(it->histogram[0]), rows, cols);
72  histogram = h;
73  ++it;
74  }
75  }
76 
77  /** \brief Estimate the Radius-based Surface Descriptor (RSD) for a given point based on its spatial neighborhood of 3D points with normals
78  * \param[in] surface the dataset containing the XYZ points
79  * \param[in] normals the dataset containing the surface normals at each point in the dataset
80  * \param[in] indices the neighborhood point indices in the dataset (first point is used as the reference)
81  * \param[in] max_dist the upper bound for the considered distance interval
82  * \param[in] nr_subdiv the number of subdivisions for the considered distance interval
83  * \param[in] plane_radius maximum radius, above which everything can be considered planar
84  * \param[in] radii the output point of a type that should have r_min and r_max fields
85  * \param[in] compute_histogram if not false, the full neighborhood histogram is provided, usable as a point signature
86  * \ingroup features
87  */
88  template <typename PointInT, typename PointNT, typename PointOutT> Eigen::MatrixXf
89  computeRSD (const pcl::PointCloud<PointInT> &surface, const pcl::PointCloud<PointNT> &normals,
90  const pcl::Indices &indices, double max_dist,
91  int nr_subdiv, double plane_radius, PointOutT &radii, bool compute_histogram = false);
92 
93  /** \brief Estimate the Radius-based Surface Descriptor (RSD) for a given point based on its spatial neighborhood of 3D points with normals
94  * \param[in] normals the dataset containing the surface normals at each point in the dataset
95  * \param[in] indices the neighborhood point indices in the dataset (first point is used as the reference)
96  * \param[in] sqr_dists the squared distances from the first to all points in the neighborhood
97  * \param[in] max_dist the upper bound for the considered distance interval
98  * \param[in] nr_subdiv the number of subdivisions for the considered distance interval
99  * \param[in] plane_radius maximum radius, above which everything can be considered planar
100  * \param[in] radii the output point of a type that should have r_min and r_max fields
101  * \param[in] compute_histogram if not false, the full neighborhood histogram is provided, usable as a point signature
102  * \ingroup features
103  */
104  template <typename PointNT, typename PointOutT> Eigen::MatrixXf
105  computeRSD (const pcl::PointCloud<PointNT> &normals,
106  const pcl::Indices &indices, const std::vector<float> &sqr_dists, double max_dist,
107  int nr_subdiv, double plane_radius, PointOutT &radii, bool compute_histogram = false);
108 
109  /** \brief @b RSDEstimation estimates the Radius-based Surface Descriptor (minimal and maximal radius of the local surface's curves)
110  * for a given point cloud dataset containing points and normals.
111  *
112  * @note If you use this code in any academic work, please cite:
113  *
114  * <ul>
115  * <li> Z.C. Marton , D. Pangercic , N. Blodow , J. Kleinehellefort, M. Beetz
116  * General 3D Modelling of Novel Objects from a Single View
117  * In Proceedings of the 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
118  * Taipei, Taiwan, October 18-22, 2010
119  * </li>
120  * <li> Z.C. Marton, D. Pangercic, N. Blodow, Michael Beetz.
121  * Combined 2D-3D Categorization and Classification for Multimodal Perception Systems.
122  * In The International Journal of Robotics Research, Sage Publications
123  * pages 1378--1402, Volume 30, Number 11, September 2011.
124  * </li>
125  * </ul>
126  *
127  * @note The code is stateful as we do not expect this class to be multicore parallelized.
128  * \author Zoltan-Csaba Marton
129  * \ingroup features
130  * \tparam PointOutT Suggested type is `pcl::PrincipalRadiiRSD`
131  */
132  template <typename PointInT, typename PointNT, typename PointOutT>
133  class RSDEstimation : public FeatureFromNormals<PointInT, PointNT, PointOutT>
134  {
135  public:
144 
147 
148  using Ptr = shared_ptr<RSDEstimation<PointInT, PointNT, PointOutT> >;
149  using ConstPtr = shared_ptr<const RSDEstimation<PointInT, PointNT, PointOutT> >;
150 
151 
152  /** \brief Empty constructor. */
154  {
155  feature_name_ = "RadiusSurfaceDescriptor";
156  }
157 
158  /** \brief Set the number of subdivisions for the considered distance interval.
159  * \param[in] nr_subdiv the number of subdivisions
160  */
161  inline void
162  setNrSubdivisions (int nr_subdiv) { nr_subdiv_ = nr_subdiv; }
163 
164  /** \brief Get the number of subdivisions for the considered distance interval.
165  * \return the number of subdivisions
166  */
167  inline int
168  getNrSubdivisions () const { return (nr_subdiv_); }
169 
170  /** \brief Set the maximum radius, above which everything can be considered planar.
171  * \note the order of magnitude should be around 10-20 times the search radius (0.2 works well for typical datasets).
172  * \note on accurate 3D data (e.g. openni sensors) a search radius as low as 0.01 still gives good results.
173  * \param[in] plane_radius the new plane radius
174  */
175  inline void
176  setPlaneRadius (double plane_radius) { plane_radius_ = plane_radius; }
177 
178  /** \brief Get the maximum radius, above which everything can be considered planar.
179  * \return the plane_radius used
180  */
181  inline double
182  getPlaneRadius () const { return (plane_radius_); }
183 
184  /** \brief Disables the setting of the number of k nearest neighbors to use for the feature estimation. */
185  inline void
186  setKSearch (int)
187  {
188  PCL_ERROR ("[pcl::%s::setKSearch] RSD does not work with k nearest neighbor search. Use setRadiusSearch() instead!\n", getClassName ().c_str ());
189  }
190 
191  /** \brief Set whether the full distance-angle histograms should be saved.
192  * @note Obtain the list of histograms by getHistograms ()
193  * \param[in] save set to true if histograms should be saved
194  */
195  inline void
196  setSaveHistograms (bool save) { save_histograms_ = save; }
197 
198  /** \brief Returns whether the full distance-angle histograms are being saved.
199  * \return true if the histograms are being be saved
200  */
201  inline bool
202  getSaveHistograms () const { return (save_histograms_); }
203 
204  /** \brief Returns a pointer to the list of full distance-angle histograms for all points.
205  * \return the histogram being saved when computing RSD
206  */
207  inline shared_ptr<std::vector<Eigen::MatrixXf, Eigen::aligned_allocator<Eigen::MatrixXf> > >
208  getHistograms () const { return (histograms_); }
209 
210  protected:
211 
212  /** \brief Estimate the estimates the Radius-based Surface Descriptor (RSD) at a set of points given by
213  * <setInputCloud (), setIndices ()> using the surface in setSearchSurface () and the spatial locator in
214  * setSearchMethod ()
215  * \param output the resultant point cloud model dataset that contains the RSD feature estimates (r_min and r_max values)
216  */
217  void
218  computeFeature (PointCloudOut &output) override;
219 
220  /** \brief The list of full distance-angle histograms for all points. */
221  shared_ptr<std::vector<Eigen::MatrixXf, Eigen::aligned_allocator<Eigen::MatrixXf> > > histograms_;
222 
223  private:
224  /** \brief The number of subdivisions for the considered distance interval. */
225  int nr_subdiv_{5};
226 
227  /** \brief The maximum radius, above which everything can be considered planar. */
228  double plane_radius_{0.2};
229 
230  /** \brief Signals whether the full distance-angle histograms are being saved. */
231  bool save_histograms_{false};
232 
233  public:
235  };
236 }
237 
238 #ifdef PCL_NO_PRECOMPILE
239 #include <pcl/features/impl/rsd.hpp>
240 #endif
Feature represents the base feature class.
Definition: feature.h:107
shared_ptr< Feature< PointInT, PointOutT > > Ptr
Definition: feature.h:114
std::string feature_name_
The feature name.
Definition: feature.h:220
shared_ptr< const Feature< PointInT, PointOutT > > ConstPtr
Definition: feature.h:115
const std::string & getClassName() const
Get a string representation of the name of this class.
Definition: feature.h:244
PointCloud represents the base class in PCL for storing collections of 3D points.
Definition: point_cloud.h:174
iterator begin() noexcept
Definition: point_cloud.h:430
RSDEstimation estimates the Radius-based Surface Descriptor (minimal and maximal radius of the local ...
Definition: rsd.h:134
void setNrSubdivisions(int nr_subdiv)
Set the number of subdivisions for the considered distance interval.
Definition: rsd.h:162
void setKSearch(int)
Disables the setting of the number of k nearest neighbors to use for the feature estimation.
Definition: rsd.h:186
typename Feature< PointInT, PointOutT >::PointCloudOut PointCloudOut
Definition: rsd.h:145
int getNrSubdivisions() const
Get the number of subdivisions for the considered distance interval.
Definition: rsd.h:168
void computeFeature(PointCloudOut &output) override
Estimate the estimates the Radius-based Surface Descriptor (RSD) at a set of points given by <setInpu...
Definition: rsd.hpp:248
RSDEstimation()
Empty constructor.
Definition: rsd.h:153
bool getSaveHistograms() const
Returns whether the full distance-angle histograms are being saved.
Definition: rsd.h:202
double getPlaneRadius() const
Get the maximum radius, above which everything can be considered planar.
Definition: rsd.h:182
shared_ptr< std::vector< Eigen::MatrixXf, Eigen::aligned_allocator< Eigen::MatrixXf > > > getHistograms() const
Returns a pointer to the list of full distance-angle histograms for all points.
Definition: rsd.h:208
void setSaveHistograms(bool save)
Set whether the full distance-angle histograms should be saved.
Definition: rsd.h:196
shared_ptr< std::vector< Eigen::MatrixXf, Eigen::aligned_allocator< Eigen::MatrixXf > > > histograms_
The list of full distance-angle histograms for all points.
Definition: rsd.h:221
void setPlaneRadius(double plane_radius)
Set the maximum radius, above which everything can be considered planar.
Definition: rsd.h:176
Defines all the PCL implemented PointT point type structures.
#define PCL_MAKE_ALIGNED_OPERATOR_NEW
Macro to signal a class requires a custom allocator.
Definition: memory.h:86
void getFeaturePointCloud(const std::vector< Eigen::MatrixXf, Eigen::aligned_allocator< Eigen::MatrixXf > > &histograms2D, PointCloud< Histogram< N > > &histogramsPC)
Transform a list of 2D matrices into a point cloud containing the values in a vector (Histogram<N>).
Definition: rsd.h:58
Eigen::MatrixXf computeRSD(const pcl::PointCloud< PointInT > &surface, const pcl::PointCloud< PointNT > &normals, const pcl::Indices &indices, double max_dist, int nr_subdiv, double plane_radius, PointOutT &radii, bool compute_histogram=false)
Estimate the Radius-based Surface Descriptor (RSD) for a given point based on its spatial neighborhoo...
Definition: rsd.hpp:49
PCL_EXPORTS int save(const std::string &file_name, const pcl::PCLPointCloud2 &blob, unsigned precision=5)
Save point cloud data to a binary file when available else to ASCII.
Defines functions, macros and traits for allocating and using memory.
IndicesAllocator<> Indices
Type used for indices in PCL.
Definition: types.h:133
Defines all the PCL and non-PCL macros used.
A point structure representing an N-D histogram.