Point Cloud Library (PCL)  1.14.1-dev
keypoint.h
1 /*
2  * Software License Agreement (BSD License)
3  *
4  * Point Cloud Library (PCL) - www.pointclouds.org
5  * Copyright (c) 2010-2011, Willow Garage, Inc.
6  *
7  * All rights reserved.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  *
13  * * Redistributions of source code must retain the above copyright
14  * notice, this list of conditions and the following disclaimer.
15  * * Redistributions in binary form must reproduce the above
16  * copyright notice, this list of conditions and the following
17  * disclaimer in the documentation and/or other materials provided
18  * with the distribution.
19  * * Neither the name of Willow Garage, Inc. nor the names of its
20  * contributors may be used to endorse or promote products derived
21  * from this software without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
24  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
25  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
26  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
27  * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
28  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
29  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
30  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
31  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
33  * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
34  * POSSIBILITY OF SUCH DAMAGE.
35  *
36  */
37 
38 #pragma once
39 
40 // PCL includes
41 #include <pcl/pcl_base.h>
42 #include <pcl/search/search.h> // for Search
43 #include <pcl/pcl_config.h>
44 
45 #include <functional>
46 
47 namespace pcl
48 {
49  /** \brief @b Keypoint represents the base class for key points.
50  * \author Bastian Steder
51  * \ingroup keypoints
52  */
53  template <typename PointInT, typename PointOutT>
54  class Keypoint : public PCLBase<PointInT>
55  {
56  public:
57  using Ptr = shared_ptr<Keypoint<PointInT, PointOutT> >;
58  using ConstPtr = shared_ptr<const Keypoint<PointInT, PointOutT> >;
59 
62 
65  using KdTreePtr = typename KdTree::Ptr;
70  using SearchMethod = std::function<int (pcl::index_t, double, pcl::Indices &, std::vector<float> &)>;
71  using SearchMethodSurface = std::function<int (const PointCloudIn &cloud, pcl::index_t index, double, pcl::Indices &, std::vector<float> &)>;
72 
73  public:
74  /** \brief Empty constructor. */
75  Keypoint () :
76  BaseClass (),
78  surface_ (),
79  tree_ ()
80 
81  {};
82 
83  /** \brief Empty destructor */
84  ~Keypoint () override = default;
85 
86  /** \brief Provide a pointer to the input dataset that we need to estimate features at every point for.
87  * \param cloud the const boost shared pointer to a PointCloud message
88  */
89  virtual void
90  setSearchSurface (const PointCloudInConstPtr &cloud) { surface_ = cloud; }
91 
92  /** \brief Get a pointer to the surface point cloud dataset. */
94  getSearchSurface () { return (surface_); }
95 
96  /** \brief Provide a pointer to the search object.
97  * \param tree a pointer to the spatial search object.
98  */
99  inline void
100  setSearchMethod (const KdTreePtr &tree) { tree_ = tree; }
101 
102  /** \brief Get a pointer to the search method used. */
103  inline KdTreePtr
104  getSearchMethod () { return (tree_); }
105 
106  /** \brief Get the internal search parameter. */
107  inline double
109 
110  /** \brief Set the number of k nearest neighbors to use for the feature estimation.
111  * \param k the number of k-nearest neighbors
112  */
113  inline void
114  setKSearch (int k) { k_ = k; }
115 
116  /** \brief get the number of k nearest neighbors used for the feature estimation. */
117  inline int
118  getKSearch () { return (k_); }
119 
120  /** \brief Set the sphere radius that is to be used for determining the nearest neighbors used for the
121  * key point detection
122  * \param radius the sphere radius used as the maximum distance to consider a point a neighbor
123  */
124  inline void
125  setRadiusSearch (double radius) { search_radius_ = radius; }
126 
127  /** \brief Get the sphere radius used for determining the neighbors. */
128  inline double
130 
131  /** \brief \return the keypoints indices in the input cloud.
132  * \note not all the daughter classes populate the keypoints indices so check emptiness before use.
133  */
136 
137  /** \brief Base method for key point detection for all points given in <setInputCloud (), setIndices ()> using
138  * the surface in setSearchSurface () and the spatial locator in setSearchMethod ()
139  * \param output the resultant point cloud model dataset containing the estimated features
140  */
141  inline void
142  compute (PointCloudOut &output);
143 
144  /** \brief Search for k-nearest neighbors using the spatial locator from \a setSearchmethod, and the given surface
145  * from \a setSearchSurface.
146  * \param index the index of the query point
147  * \param parameter the search parameter (either k or radius)
148  * \param indices the resultant vector of indices representing the k-nearest neighbors
149  * \param distances the resultant vector of distances representing the distances from the query point to the
150  * k-nearest neighbors
151  */
152  inline int
153  searchForNeighbors (pcl::index_t index, double parameter, pcl::Indices &indices, std::vector<float> &distances) const
154  {
155  if (surface_ == input_) // if the two surfaces are the same
156  return (search_method_ (index, parameter, indices, distances));
157  return (search_method_surface_ (*input_, index, parameter, indices, distances));
158  }
159 
160  protected:
162 
163  virtual bool
164  initCompute ();
165 
166  /** \brief The key point detection method's name. */
167  std::string name_;
168 
169  /** \brief The search method template for indices. */
171 
172  /** \brief The search method template for points. */
174 
175  /** \brief An input point cloud describing the surface that is to be used for nearest neighbors estimation. */
177 
178  /** \brief A pointer to the spatial search object. */
180 
181  /** \brief The actual search parameter (casted from either \a search_radius_ or \a k_). */
182  double search_parameter_{0.0};
183 
184  /** \brief The nearest neighbors search radius for each point. */
185  double search_radius_{0.0};
186 
187  /** \brief The number of K nearest neighbors to use for each point. */
188  int k_{0};
189 
190  /** \brief Indices of the keypoints in the input cloud. */
192 
193  /** \brief Get a string representation of the name of this class. */
194  inline const std::string&
195  getClassName () const { return (name_); }
196 
197  /** \brief Abstract key point detection method. */
198  virtual void
200  };
201 }
202 
203 #include <pcl/keypoints/impl/keypoint.hpp>
void compute(PointCloudOut &output)
Base method for key point detection for all points given in <setInputCloud (), setIndices ()> using t...
Definition: keypoint.hpp:137
SearchMethod search_method_
The search method template for indices.
Definition: keypoint.h:170
virtual void detectKeypoints(PointCloudOut &output)=0
Abstract key point detection method.
~Keypoint() override=default
Empty destructor.
void setRadiusSearch(double radius)
Set the sphere radius that is to be used for determining the nearest neighbors used for the key point...
Definition: keypoint.h:125
int getKSearch()
get the number of k nearest neighbors used for the feature estimation.
Definition: keypoint.h:118
std::function< int(pcl::index_t, double, pcl::Indices &, std::vector< float > &)> SearchMethod
Definition: keypoint.h:70
PointCloudInConstPtr getSearchSurface()
Get a pointer to the surface point cloud dataset.
Definition: keypoint.h:94
std::function< int(const PointCloudIn &cloud, pcl::index_t index, double, pcl::Indices &, std::vector< float > &)> SearchMethodSurface
Definition: keypoint.h:71
shared_ptr< Keypoint< PointInT, PointOutT > > Ptr
Definition: keypoint.h:57
void setSearchMethod(const KdTreePtr &tree)
Provide a pointer to the search object.
Definition: keypoint.h:100
double getRadiusSearch()
Get the sphere radius used for determining the neighbors.
Definition: keypoint.h:129
typename PointCloudIn::Ptr PointCloudInPtr
Definition: keypoint.h:67
pcl::PointIndicesConstPtr getKeypointsIndices()
Definition: keypoint.h:135
int k_
The number of K nearest neighbors to use for each point.
Definition: keypoint.h:188
std::string name_
The key point detection method's name.
Definition: keypoint.h:167
virtual bool initCompute()
Definition: keypoint.hpp:51
double search_parameter_
The actual search parameter (casted from either search_radius_ or k_).
Definition: keypoint.h:182
typename PointCloudIn::ConstPtr PointCloudInConstPtr
Definition: keypoint.h:68
virtual void setSearchSurface(const PointCloudInConstPtr &cloud)
Provide a pointer to the input dataset that we need to estimate features at every point for.
Definition: keypoint.h:90
KdTreePtr getSearchMethod()
Get a pointer to the search method used.
Definition: keypoint.h:104
pcl::PointIndicesPtr keypoints_indices_
Indices of the keypoints in the input cloud.
Definition: keypoint.h:191
SearchMethodSurface search_method_surface_
The search method template for points.
Definition: keypoint.h:173
pcl::PointCloud< PointOutT > PointCloudOut
Definition: keypoint.h:69
typename KdTree::Ptr KdTreePtr
Definition: keypoint.h:65
KdTreePtr tree_
A pointer to the spatial search object.
Definition: keypoint.h:179
PointCloudInConstPtr surface_
An input point cloud describing the surface that is to be used for nearest neighbors estimation.
Definition: keypoint.h:176
Keypoint()
Empty constructor.
Definition: keypoint.h:75
double search_radius_
The nearest neighbors search radius for each point.
Definition: keypoint.h:185
int searchForNeighbors(pcl::index_t index, double parameter, pcl::Indices &indices, std::vector< float > &distances) const
Search for k-nearest neighbors using the spatial locator from setSearchmethod, and the given surface ...
Definition: keypoint.h:153
const std::string & getClassName() const
Get a string representation of the name of this class.
Definition: keypoint.h:195
void setKSearch(int k)
Set the number of k nearest neighbors to use for the feature estimation.
Definition: keypoint.h:114
shared_ptr< const Keypoint< PointInT, PointOutT > > ConstPtr
Definition: keypoint.h:58
double getSearchParameter()
Get the internal search parameter.
Definition: keypoint.h:108
PCL base class.
Definition: pcl_base.h:70
PointCloudConstPtr input_
The input point cloud dataset.
Definition: pcl_base.h:147
shared_ptr< PointCloud< PointInT > > Ptr
Definition: point_cloud.h:413
shared_ptr< const PointCloud< PointInT > > ConstPtr
Definition: point_cloud.h:414
shared_ptr< pcl::search::Search< PointInT > > Ptr
Definition: search.h:81
detail::int_type_t< detail::index_type_size, detail::index_type_signed > index_t
Type used for an index in PCL.
Definition: types.h:112
IndicesAllocator<> Indices
Type used for indices in PCL.
Definition: types.h:133
PointIndices::Ptr PointIndicesPtr
Definition: PointIndices.h:23
PointIndices::ConstPtr PointIndicesConstPtr
Definition: PointIndices.h:24