Point Cloud Library (PCL)  1.13.1-dev
icp.h
1 /*
2  * Software License Agreement (BSD License)
3  *
4  * Point Cloud Library (PCL) - www.pointclouds.org
5  * Copyright (c) 2010, Willow Garage, Inc.
6  * Copyright (c) 2012-, Open Perception, Inc.
7  *
8  * All rights reserved.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  *
14  * * Redistributions of source code must retain the above copyright
15  * notice, this list of conditions and the following disclaimer.
16  * * Redistributions in binary form must reproduce the above
17  * copyright notice, this list of conditions and the following
18  * disclaimer in the documentation and/or other materials provided
19  * with the distribution.
20  * * Neither the name of the copyright holder(s) nor the names of its
21  * contributors may be used to endorse or promote products derived
22  * from this software without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
25  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
26  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
27  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
28  * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
29  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
30  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
31  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
32  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
34  * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35  * POSSIBILITY OF SUCH DAMAGE.
36  *
37  * $Id$
38  *
39  */
40 
41 #pragma once
42 
43 // PCL includes
44 #include <pcl/registration/correspondence_estimation.h>
45 #include <pcl/registration/default_convergence_criteria.h>
46 #include <pcl/registration/registration.h>
47 #include <pcl/registration/transformation_estimation_point_to_plane_lls.h>
48 #include <pcl/registration/transformation_estimation_svd.h>
49 #include <pcl/registration/transformation_estimation_symmetric_point_to_plane_lls.h>
50 #include <pcl/memory.h> // for dynamic_pointer_cast, pcl::make_shared, shared_ptr
51 
52 namespace pcl {
53 /** \brief @b IterativeClosestPoint provides a base implementation of the Iterative
54  * Closest Point algorithm. The transformation is estimated based on Singular Value
55  * Decomposition (SVD).
56  *
57  * The algorithm has several termination criteria:
58  *
59  * <ol>
60  * <li>Number of iterations has reached the maximum user imposed number of iterations
61  * (via \ref setMaximumIterations)</li> <li>The epsilon (difference) between the
62  * previous transformation and the current estimated transformation is smaller than an
63  * user imposed value (via \ref setTransformationEpsilon)</li> <li>The sum of Euclidean
64  * squared errors is smaller than a user defined threshold (via \ref
65  * setEuclideanFitnessEpsilon)</li>
66  * </ol>
67  *
68  *
69  * Usage example:
70  * \code
71  * IterativeClosestPoint<PointXYZ, PointXYZ> icp;
72  * // Set the input source and target
73  * icp.setInputSource (cloud_source);
74  * icp.setInputTarget (cloud_target);
75  *
76  * // Set the max correspondence distance to 5cm (e.g., correspondences with higher
77  * // distances will be ignored)
78  * icp.setMaxCorrespondenceDistance (0.05);
79  * // Set the maximum number of iterations (criterion 1)
80  * icp.setMaximumIterations (50);
81  * // Set the transformation epsilon (criterion 2)
82  * icp.setTransformationEpsilon (1e-8);
83  * // Set the euclidean distance difference epsilon (criterion 3)
84  * icp.setEuclideanFitnessEpsilon (1);
85  *
86  * // Perform the alignment
87  * icp.align (cloud_source_registered);
88  *
89  * // Obtain the transformation that aligned cloud_source to cloud_source_registered
90  * Eigen::Matrix4f transformation = icp.getFinalTransformation ();
91  * \endcode
92  *
93  * \author Radu B. Rusu, Michael Dixon
94  * \ingroup registration
95  */
96 template <typename PointSource, typename PointTarget, typename Scalar = float>
97 class IterativeClosestPoint : public Registration<PointSource, PointTarget, Scalar> {
98 public:
101  using PointCloudSourcePtr = typename PointCloudSource::Ptr;
102  using PointCloudSourceConstPtr = typename PointCloudSource::ConstPtr;
103 
106  using PointCloudTargetPtr = typename PointCloudTarget::Ptr;
107  using PointCloudTargetConstPtr = typename PointCloudTarget::ConstPtr;
108 
111 
112  using Ptr = shared_ptr<IterativeClosestPoint<PointSource, PointTarget, Scalar>>;
113  using ConstPtr =
114  shared_ptr<const IterativeClosestPoint<PointSource, PointTarget, Scalar>>;
115 
139 
143 
144  /** \brief Empty constructor. */
146  : x_idx_offset_(0)
147  , y_idx_offset_(0)
148  , z_idx_offset_(0)
149  , nx_idx_offset_(0)
150  , ny_idx_offset_(0)
151  , nz_idx_offset_(0)
153  , source_has_normals_(false)
154  , target_has_normals_(false)
155  {
156  reg_name_ = "IterativeClosestPoint";
158  new pcl::registration::
159  TransformationEstimationSVD<PointSource, PointTarget, Scalar>());
161  new pcl::registration::
163  convergence_criteria_.reset(
166  };
167 
168  /**
169  * \brief Due to `convergence_criteria_` holding references to the class members,
170  * it is tricky to correctly implement its copy and move operations correctly. This
171  * can result in subtle bugs and to prevent them, these operations for ICP have
172  * been disabled.
173  *
174  * \todo: remove deleted ctors and assignments operations after resolving the issue
175  */
182 
183  /** \brief Empty destructor */
184  ~IterativeClosestPoint() override = default;
185 
186  /** \brief Returns a pointer to the DefaultConvergenceCriteria used by the
187  * IterativeClosestPoint class. This allows to check the convergence state after the
188  * align() method as well as to configure DefaultConvergenceCriteria's parameters not
189  * available through the ICP API before the align() method is called. Please note that
190  * the align method sets max_iterations_, euclidean_fitness_epsilon_ and
191  * transformation_epsilon_ and therefore overrides the default / set values of the
192  * DefaultConvergenceCriteria instance. \return Pointer to the IterativeClosestPoint's
193  * DefaultConvergenceCriteria.
194  */
197  {
198  return convergence_criteria_;
199  }
200 
201  /** \brief Provide a pointer to the input source
202  * (e.g., the point cloud that we want to align to the target)
203  *
204  * \param[in] cloud the input point cloud source
205  */
206  void
208  {
210  const auto fields = pcl::getFields<PointSource>();
211  source_has_normals_ = false;
212  for (const auto& field : fields) {
213  if (field.name == "x")
214  x_idx_offset_ = field.offset;
215  else if (field.name == "y")
216  y_idx_offset_ = field.offset;
217  else if (field.name == "z")
218  z_idx_offset_ = field.offset;
219  else if (field.name == "normal_x") {
220  source_has_normals_ = true;
221  nx_idx_offset_ = field.offset;
222  }
223  else if (field.name == "normal_y") {
224  source_has_normals_ = true;
225  ny_idx_offset_ = field.offset;
226  }
227  else if (field.name == "normal_z") {
228  source_has_normals_ = true;
229  nz_idx_offset_ = field.offset;
230  }
231  }
232  }
233 
234  /** \brief Provide a pointer to the input target
235  * (e.g., the point cloud that we want to align the input source to)
236  *
237  * \param[in] cloud the input point cloud target
238  */
239  void
241  {
243  const auto fields = pcl::getFields<PointSource>();
244  target_has_normals_ = false;
245  for (const auto& field : fields) {
246  if (field.name == "normal_x" || field.name == "normal_y" ||
247  field.name == "normal_z") {
248  target_has_normals_ = true;
249  break;
250  }
251  }
252  }
253 
254  /** \brief Set whether to use reciprocal correspondence or not
255  *
256  * \param[in] use_reciprocal_correspondence whether to use reciprocal correspondence
257  * or not
258  */
259  inline void
260  setUseReciprocalCorrespondences(bool use_reciprocal_correspondence)
261  {
262  use_reciprocal_correspondence_ = use_reciprocal_correspondence;
263  }
264 
265  /** \brief Obtain whether reciprocal correspondence are used or not */
266  inline bool
268  {
270  }
271 
272 protected:
273  /** \brief Apply a rigid transform to a given dataset. Here we check whether
274  * the dataset has surface normals in addition to XYZ, and rotate normals as well.
275  * \param[in] input the input point cloud
276  * \param[out] output the resultant output point cloud
277  * \param[in] transform a 4x4 rigid transformation
278  * \note Can be used with cloud_in equal to cloud_out
279  */
280  virtual void
281  transformCloud(const PointCloudSource& input,
282  PointCloudSource& output,
283  const Matrix4& transform);
284 
285  /** \brief Rigid transformation computation method with initial guess.
286  * \param output the transformed input point cloud dataset using the rigid
287  * transformation found \param guess the initial guess of the transformation to
288  * compute
289  */
290  void
291  computeTransformation(PointCloudSource& output, const Matrix4& guess) override;
292 
293  /** \brief Looks at the Estimators and Rejectors and determines whether their
294  * blob-setter methods need to be called */
295  virtual void
297 
298  /** \brief XYZ fields offset. */
300 
301  /** \brief Normal fields offset. */
303 
304  /** \brief The correspondence type used for correspondence estimation. */
306 
307  /** \brief Internal check whether source dataset has normals or not. */
309  /** \brief Internal check whether target dataset has normals or not. */
311 
312  /** \brief Checks for whether estimators and rejectors need various data */
314 };
315 
316 /** \brief @b IterativeClosestPointWithNormals is a special case of
317  * IterativeClosestPoint, that uses a transformation estimated based on
318  * Point to Plane distances by default.
319  *
320  * By default, this implementation uses the traditional point to plane objective
321  * and computes point to plane distances using the normals of the target point
322  * cloud. It also provides the option (through setUseSymmetricObjective) of
323  * using the symmetric objective function of [Rusinkiewicz 2019]. This objective
324  * uses the normals of both the source and target point cloud and has a similar
325  * computational cost to the traditional point to plane objective while also
326  * offering improved convergence speed and a wider basin of convergence.
327  *
328  * Note that this implementation not demean the point clouds which can lead
329  * to increased numerical error. If desired, a user can demean the point cloud,
330  * run iterative closest point, and composite the resulting ICP transformation
331  * with the translations from demeaning to obtain a transformation between
332  * the original point clouds.
333  *
334  * \author Radu B. Rusu, Matthew Cong
335  * \ingroup registration
336  */
337 template <typename PointSource, typename PointTarget, typename Scalar = float>
339 : public IterativeClosestPoint<PointSource, PointTarget, Scalar> {
340 public:
341  using PointCloudSource = typename IterativeClosestPoint<PointSource,
342  PointTarget,
343  Scalar>::PointCloudSource;
344  using PointCloudTarget = typename IterativeClosestPoint<PointSource,
345  PointTarget,
346  Scalar>::PointCloudTarget;
347  using Matrix4 =
349 
355 
356  using Ptr =
357  shared_ptr<IterativeClosestPointWithNormals<PointSource, PointTarget, Scalar>>;
358  using ConstPtr = shared_ptr<
360 
361  /** \brief Empty constructor. */
363  {
364  reg_name_ = "IterativeClosestPointWithNormals";
367  // correspondence_rejectors_.add
368  };
369 
370  /** \brief Empty destructor */
371  ~IterativeClosestPointWithNormals() override = default;
372 
373  /** \brief Set whether to use a symmetric objective function or not
374  *
375  * \param[in] use_symmetric_objective whether to use a symmetric objective function or
376  * not
377  */
378  inline void
379  setUseSymmetricObjective(bool use_symmetric_objective)
380  {
381  use_symmetric_objective_ = use_symmetric_objective;
383  auto symmetric_transformation_estimation = pcl::make_shared<
385  PointSource,
386  PointTarget,
387  Scalar>>();
388  symmetric_transformation_estimation->setEnforceSameDirectionNormals(
390  transformation_estimation_ = symmetric_transformation_estimation;
391  }
392  else {
395  PointTarget,
396  Scalar>());
397  }
398  }
399 
400  /** \brief Obtain whether a symmetric objective is used or not */
401  inline bool
403  {
405  }
406 
407  /** \brief Set whether or not to negate source or target normals on a per-point basis
408  * such that they point in the same direction. Only applicable to the symmetric
409  * objective function.
410  *
411  * \param[in] enforce_same_direction_normals whether to negate source or target
412  * normals on a per-point basis such that they point in the same direction.
413  */
414  inline void
415  setEnforceSameDirectionNormals(bool enforce_same_direction_normals)
416  {
417  enforce_same_direction_normals_ = enforce_same_direction_normals;
418  auto symmetric_transformation_estimation = dynamic_pointer_cast<
420  PointTarget,
421  Scalar>>(
423  if (symmetric_transformation_estimation)
424  symmetric_transformation_estimation->setEnforceSameDirectionNormals(
426  }
427 
428  /** \brief Obtain whether source or target normals are negated on a per-point basis
429  * such that they point in the same direction or not */
430  inline bool
432  {
434  }
435 
436 protected:
437  /** \brief Apply a rigid transform to a given dataset
438  * \param[in] input the input point cloud
439  * \param[out] output the resultant output point cloud
440  * \param[in] transform a 4x4 rigid transformation
441  * \note Can be used with cloud_in equal to cloud_out
442  */
443  void
444  transformCloud(const PointCloudSource& input,
445  PointCloudSource& output,
446  const Matrix4& transform) override;
447 
448  /** \brief Type of objective function (asymmetric vs. symmetric) used for transform
449  * estimation */
451  /** \brief Whether or not to negate source and/or target normals such that they point
452  * in the same direction in the symmetric objective function */
454 };
455 
456 } // namespace pcl
457 
458 #include <pcl/registration/impl/icp.hpp>
IterativeClosestPoint provides a base implementation of the Iterative Closest Point algorithm.
Definition: icp.h:97
typename PointCloudSource::ConstPtr PointCloudSourceConstPtr
Definition: icp.h:102
typename Registration< PointSource, PointTarget, Scalar >::Matrix4 Matrix4
Definition: icp.h:142
std::size_t y_idx_offset_
Definition: icp.h:299
std::size_t nz_idx_offset_
Definition: icp.h:302
bool use_reciprocal_correspondence_
The correspondence type used for correspondence estimation.
Definition: icp.h:305
void setUseReciprocalCorrespondences(bool use_reciprocal_correspondence)
Set whether to use reciprocal correspondence or not.
Definition: icp.h:260
IterativeClosestPoint & operator=(const IterativeClosestPoint &)=delete
typename PointCloudTarget::ConstPtr PointCloudTargetConstPtr
Definition: icp.h:107
typename Registration< PointSource, PointTarget, Scalar >::PointCloudTarget PointCloudTarget
Definition: icp.h:105
std::size_t ny_idx_offset_
Definition: icp.h:302
shared_ptr< IterativeClosestPoint< PointSource, PointTarget, Scalar > > Ptr
Definition: icp.h:112
bool need_source_blob_
Checks for whether estimators and rejectors need various data.
Definition: icp.h:313
typename PointCloudTarget::Ptr PointCloudTargetPtr
Definition: icp.h:106
typename Registration< PointSource, PointTarget, Scalar >::PointCloudSource PointCloudSource
Definition: icp.h:100
pcl::registration::DefaultConvergenceCriteria< Scalar >::Ptr convergence_criteria_
Definition: icp.h:141
IterativeClosestPoint & operator=(IterativeClosestPoint &&)=delete
bool getUseReciprocalCorrespondences() const
Obtain whether reciprocal correspondence are used or not.
Definition: icp.h:267
IterativeClosestPoint()
Empty constructor.
Definition: icp.h:145
void setInputTarget(const PointCloudTargetConstPtr &cloud) override
Provide a pointer to the input target (e.g., the point cloud that we want to align the input source t...
Definition: icp.h:240
PointIndices::ConstPtr PointIndicesConstPtr
Definition: icp.h:110
bool source_has_normals_
Internal check whether source dataset has normals or not.
Definition: icp.h:308
virtual void transformCloud(const PointCloudSource &input, PointCloudSource &output, const Matrix4 &transform)
Apply a rigid transform to a given dataset.
Definition: icp.hpp:51
virtual void determineRequiredBlobData()
Looks at the Estimators and Rejectors and determines whether their blob-setter methods need to be cal...
Definition: icp.hpp:272
std::size_t nx_idx_offset_
Normal fields offset.
Definition: icp.h:302
IterativeClosestPoint(IterativeClosestPoint &&)=delete
void computeTransformation(PointCloudSource &output, const Matrix4 &guess) override
Rigid transformation computation method with initial guess.
Definition: icp.hpp:115
PointIndices::Ptr PointIndicesPtr
Definition: icp.h:109
pcl::registration::DefaultConvergenceCriteria< Scalar >::Ptr getConvergeCriteria()
Returns a pointer to the DefaultConvergenceCriteria used by the IterativeClosestPoint class.
Definition: icp.h:196
IterativeClosestPoint(const IterativeClosestPoint &)=delete
Due to convergence_criteria_ holding references to the class members, it is tricky to correctly imple...
void setInputSource(const PointCloudSourceConstPtr &cloud) override
Provide a pointer to the input source (e.g., the point cloud that we want to align to the target)
Definition: icp.h:207
~IterativeClosestPoint() override=default
Empty destructor.
bool target_has_normals_
Internal check whether target dataset has normals or not.
Definition: icp.h:310
typename PointCloudSource::Ptr PointCloudSourcePtr
Definition: icp.h:101
shared_ptr< const IterativeClosestPoint< PointSource, PointTarget, Scalar > > ConstPtr
Definition: icp.h:114
std::size_t z_idx_offset_
Definition: icp.h:299
std::size_t x_idx_offset_
XYZ fields offset.
Definition: icp.h:299
IterativeClosestPointWithNormals is a special case of IterativeClosestPoint, that uses a transformati...
Definition: icp.h:339
IterativeClosestPointWithNormals()
Empty constructor.
Definition: icp.h:362
void setUseSymmetricObjective(bool use_symmetric_objective)
Set whether to use a symmetric objective function or not.
Definition: icp.h:379
shared_ptr< IterativeClosestPointWithNormals< PointSource, PointTarget, Scalar > > Ptr
Definition: icp.h:357
typename IterativeClosestPoint< PointSource, PointTarget, Scalar >::PointCloudSource PointCloudSource
Definition: icp.h:343
bool getUseSymmetricObjective() const
Obtain whether a symmetric objective is used or not.
Definition: icp.h:402
bool use_symmetric_objective_
Type of objective function (asymmetric vs.
Definition: icp.h:450
~IterativeClosestPointWithNormals() override=default
Empty destructor.
void setEnforceSameDirectionNormals(bool enforce_same_direction_normals)
Set whether or not to negate source or target normals on a per-point basis such that they point in th...
Definition: icp.h:415
void transformCloud(const PointCloudSource &input, PointCloudSource &output, const Matrix4 &transform) override
Apply a rigid transform to a given dataset.
Definition: icp.hpp:314
bool getEnforceSameDirectionNormals() const
Obtain whether source or target normals are negated on a per-point basis such that they point in the ...
Definition: icp.h:431
typename IterativeClosestPoint< PointSource, PointTarget, Scalar >::Matrix4 Matrix4
Definition: icp.h:348
bool enforce_same_direction_normals_
Whether or not to negate source and/or target normals such that they point in the same direction in t...
Definition: icp.h:453
shared_ptr< const IterativeClosestPointWithNormals< PointSource, PointTarget, Scalar > > ConstPtr
Definition: icp.h:359
typename IterativeClosestPoint< PointSource, PointTarget, Scalar >::PointCloudTarget PointCloudTarget
Definition: icp.h:346
Registration represents the base registration class for general purpose, ICP-like methods.
Definition: registration.h:57
virtual void setInputSource(const PointCloudSourceConstPtr &cloud)
Provide a pointer to the input source (e.g., the point cloud that we want to align to the target)
std::string reg_name_
The registration method name.
Definition: registration.h:560
Matrix4 transformation_
The transformation matrix estimated by the registration method.
Definition: registration.h:588
virtual void setInputTarget(const PointCloudTargetConstPtr &cloud)
Provide a pointer to the input target (e.g., the point cloud that we want to align the input source t...
CorrespondenceEstimationPtr correspondence_estimation_
A CorrespondenceEstimation object, used to estimate correspondences between the source and the target...
Definition: registration.h:641
int nr_iterations_
The number of iterations the internal optimization ran for (used internally).
Definition: registration.h:570
Eigen::Matrix< Scalar, 4, 4 > Matrix4
Definition: registration.h:59
CorrespondencesPtr correspondences_
The set of correspondences determined at this ICP step.
Definition: registration.h:633
TransformationEstimationPtr transformation_estimation_
A TransformationEstimation object, used to calculate the 4x4 rigid transformation.
Definition: registration.h:637
double transformation_rotation_epsilon_
The maximum rotation difference between two consecutive transformations in order to consider converge...
Definition: registration.h:602
std::vector< CorrespondenceRejectorPtr > correspondence_rejectors_
The list of correspondence rejectors to use.
Definition: registration.h:644
DefaultConvergenceCriteria represents an instantiation of ConvergenceCriteria, and implements the fol...
shared_ptr< DefaultConvergenceCriteria< Scalar > > Ptr
TransformationEstimationPointToPlaneLLS implements a Linear Least Squares (LLS) approximation for min...
TransformationEstimationSymmetricPointToPlaneLLS implements a Linear Least Squares (LLS) approximatio...
Defines functions, macros and traits for allocating and using memory.
shared_ptr< T > make_shared(Args &&... args)
Returns a pcl::shared_ptr compliant with type T's allocation policy.
shared_ptr< ::pcl::PointIndices > Ptr
Definition: PointIndices.h:13
shared_ptr< const ::pcl::PointIndices > ConstPtr
Definition: PointIndices.h:14