|
| using | PointCloudSource = typename Registration< PointSource, PointTarget, Scalar >::PointCloudSource |
| |
| using | PointCloudSourcePtr = typename PointCloudSource::Ptr |
| |
| using | PointCloudSourceConstPtr = typename PointCloudSource::ConstPtr |
| |
| using | PointCloudTarget = typename Registration< PointSource, PointTarget, Scalar >::PointCloudTarget |
| |
| using | PointCloudTargetPtr = typename PointCloudTarget::Ptr |
| |
| using | PointCloudTargetConstPtr = typename PointCloudTarget::ConstPtr |
| |
| using | PointIndicesPtr = PointIndices::Ptr |
| |
| using | PointIndicesConstPtr = PointIndices::ConstPtr |
| |
| using | Ptr = shared_ptr< IterativeClosestPoint< PointSource, PointTarget, Scalar > > |
| |
| using | ConstPtr = shared_ptr< const IterativeClosestPoint< PointSource, PointTarget, Scalar > > |
| |
| using | Matrix4 = typename Registration< PointSource, PointTarget, Scalar >::Matrix4 |
| |
| using | Matrix4 = Eigen::Matrix< float, 4, 4 > |
| |
| using | Ptr = shared_ptr< Registration< PointSource, PointTarget, float > > |
| |
| using | ConstPtr = shared_ptr< const Registration< PointSource, PointTarget, float > > |
| |
| using | CorrespondenceRejectorPtr = pcl::registration::CorrespondenceRejector::Ptr |
| |
| using | KdTree = pcl::search::KdTree< PointTarget > |
| |
| using | KdTreePtr = typename KdTree::Ptr |
| |
| using | KdTreeReciprocal = pcl::search::KdTree< PointSource > |
| |
| using | KdTreeReciprocalPtr = typename KdTreeReciprocal::Ptr |
| |
| using | PointCloudSource = pcl::PointCloud< PointSource > |
| |
| using | PointCloudSourcePtr = typename PointCloudSource::Ptr |
| |
| using | PointCloudSourceConstPtr = typename PointCloudSource::ConstPtr |
| |
| using | PointCloudTarget = pcl::PointCloud< PointTarget > |
| |
| using | PointCloudTargetPtr = typename PointCloudTarget::Ptr |
| |
| using | PointCloudTargetConstPtr = typename PointCloudTarget::ConstPtr |
| |
| using | PointRepresentationConstPtr = typename KdTree::PointRepresentationConstPtr |
| |
| using | TransformationEstimation = typename pcl::registration::TransformationEstimation< PointSource, PointTarget, float > |
| |
| using | TransformationEstimationPtr = typename TransformationEstimation::Ptr |
| |
| using | TransformationEstimationConstPtr = typename TransformationEstimation::ConstPtr |
| |
| using | CorrespondenceEstimation = pcl::registration::CorrespondenceEstimationBase< PointSource, PointTarget, float > |
| |
| using | CorrespondenceEstimationPtr = typename CorrespondenceEstimation::Ptr |
| |
| using | CorrespondenceEstimationConstPtr = typename CorrespondenceEstimation::ConstPtr |
| |
| using | UpdateVisualizerCallbackSignature = void(const pcl::PointCloud< PointSource > &, const pcl::Indices &, const pcl::PointCloud< PointTarget > &, const pcl::Indices &) |
| | The callback signature to the function updating intermediate source point cloud position during it's registration to the target point cloud. More...
|
| |
| using | PointCloud = pcl::PointCloud< PointSource > |
| |
| using | PointCloudPtr = typename PointCloud::Ptr |
| |
| using | PointCloudConstPtr = typename PointCloud::ConstPtr |
| |
| using | PointIndicesPtr = PointIndices::Ptr |
| |
| using | PointIndicesConstPtr = PointIndices::ConstPtr |
| |
|
| | IterativeClosestPoint () |
| | Empty constructor. More...
|
| |
| | IterativeClosestPoint (const IterativeClosestPoint &)=delete |
| | Due to convergence_criteria_ holding references to the class members, it is tricky to correctly implement its copy and move operations correctly. More...
|
| |
| | IterativeClosestPoint (IterativeClosestPoint &&)=delete |
| |
| IterativeClosestPoint & | operator= (const IterativeClosestPoint &)=delete |
| |
| IterativeClosestPoint & | operator= (IterativeClosestPoint &&)=delete |
| |
| | ~IterativeClosestPoint () override=default |
| | Empty destructor. More...
|
| |
| pcl::registration::DefaultConvergenceCriteria< Scalar >::Ptr | getConvergeCriteria () |
| | Returns a pointer to the DefaultConvergenceCriteria used by the IterativeClosestPoint class. More...
|
| |
| void | setInputSource (const PointCloudSourceConstPtr &cloud) override |
| | Provide a pointer to the input source (e.g., the point cloud that we want to align to the target) More...
|
| |
| void | setInputTarget (const PointCloudTargetConstPtr &cloud) override |
| | Provide a pointer to the input target (e.g., the point cloud that we want to align the input source to) More...
|
| |
| void | setUseReciprocalCorrespondences (bool use_reciprocal_correspondence) |
| | Set whether to use reciprocal correspondence or not. More...
|
| |
| bool | getUseReciprocalCorrespondences () const |
| | Obtain whether reciprocal correspondence are used or not. More...
|
| |
| void | setNumberOfThreads (unsigned int nr_threads) |
| | Set the number of threads to use. More...
|
| |
| | Registration () |
| | Empty constructor. More...
|
| |
| | ~Registration () override=default |
| | destructor. More...
|
| |
| void | setTransformationEstimation (const TransformationEstimationPtr &te) |
| | Provide a pointer to the transformation estimation object. More...
|
| |
| void | setCorrespondenceEstimation (const CorrespondenceEstimationPtr &ce) |
| | Provide a pointer to the correspondence estimation object. More...
|
| |
| PointCloudSourceConstPtr const | getInputSource () |
| | Get a pointer to the input point cloud dataset target. More...
|
| |
| PointCloudTargetConstPtr const | getInputTarget () |
| | Get a pointer to the input point cloud dataset target. More...
|
| |
| void | setSearchMethodTarget (const KdTreePtr &tree, bool force_no_recompute=false) |
| | Provide a pointer to the search object used to find correspondences in the target cloud. More...
|
| |
| KdTreePtr | getSearchMethodTarget () const |
| | Get a pointer to the search method used to find correspondences in the target cloud. More...
|
| |
| void | setSearchMethodSource (const KdTreeReciprocalPtr &tree, bool force_no_recompute=false) |
| | Provide a pointer to the search object used to find correspondences in the source cloud (usually used by reciprocal correspondence finding). More...
|
| |
| KdTreeReciprocalPtr | getSearchMethodSource () const |
| | Get a pointer to the search method used to find correspondences in the source cloud. More...
|
| |
| Matrix4 | getFinalTransformation () |
| | Get the final transformation matrix estimated by the registration method. More...
|
| |
| Matrix4 | getLastIncrementalTransformation () |
| | Get the last incremental transformation matrix estimated by the registration method. More...
|
| |
| void | setMaximumIterations (int nr_iterations) |
| | Set the maximum number of iterations the internal optimization should run for. More...
|
| |
| int | getMaximumIterations () |
| | Get the maximum number of iterations the internal optimization should run for, as set by the user. More...
|
| |
| void | setRANSACIterations (int ransac_iterations) |
| | Set the number of iterations RANSAC should run for. More...
|
| |
| double | getRANSACIterations () |
| | Get the number of iterations RANSAC should run for, as set by the user. More...
|
| |
| void | setRANSACOutlierRejectionThreshold (double inlier_threshold) |
| | Set the inlier distance threshold for the internal RANSAC outlier rejection loop. More...
|
| |
| double | getRANSACOutlierRejectionThreshold () |
| | Get the inlier distance threshold for the internal outlier rejection loop as set by the user. More...
|
| |
| void | setMaxCorrespondenceDistance (double distance_threshold) |
| | Set the maximum distance threshold between two correspondent points in source <-> target. More...
|
| |
| double | getMaxCorrespondenceDistance () |
| | Get the maximum distance threshold between two correspondent points in source <-> target. More...
|
| |
| void | setTransformationEpsilon (double epsilon) |
| | Set the transformation epsilon (maximum allowable translation squared difference between two consecutive transformations) in order for an optimization to be considered as having converged to the final solution. More...
|
| |
| double | getTransformationEpsilon () |
| | Get the transformation epsilon (maximum allowable translation squared difference between two consecutive transformations) as set by the user. More...
|
| |
| void | setTransformationRotationEpsilon (double epsilon) |
| | Set the transformation rotation epsilon (maximum allowable rotation difference between two consecutive transformations) in order for an optimization to be considered as having converged to the final solution. More...
|
| |
| double | getTransformationRotationEpsilon () |
| | Get the transformation rotation epsilon (maximum allowable difference between two consecutive transformations) as set by the user (epsilon is the cos(angle) in a axis-angle representation). More...
|
| |
| void | setEuclideanFitnessEpsilon (double epsilon) |
| | Set the maximum allowed Euclidean error between two consecutive steps in the ICP loop, before the algorithm is considered to have converged. More...
|
| |
| double | getEuclideanFitnessEpsilon () |
| | Get the maximum allowed distance error before the algorithm will be considered to have converged, as set by the user. More...
|
| |
| void | setPointRepresentation (const PointRepresentationConstPtr &point_representation) |
| | Provide a boost shared pointer to the PointRepresentation to be used when comparing points. More...
|
| |
| bool | registerVisualizationCallback (std::function< UpdateVisualizerCallbackSignature > &visualizerCallback) |
| | Register the user callback function which will be called from registration thread in order to update point cloud obtained after each iteration. More...
|
| |
| double | getFitnessScore (double max_range=std::numeric_limits< double >::max()) |
| | Obtain the Euclidean fitness score (e.g., mean of squared distances from the source to the target) More...
|
| |
| double | getFitnessScore (const std::vector< float > &distances_a, const std::vector< float > &distances_b) |
| | Obtain the Euclidean fitness score (e.g., mean of squared distances from the source to the target) from two sets of correspondence distances (distances between source and target points) More...
|
| |
| bool | hasConverged () const |
| | Return the state of convergence after the last align run. More...
|
| |
| void | align (PointCloudSource &output) |
| | Call the registration algorithm which estimates the transformation and returns the transformed source (input) as output. More...
|
| |
| void | align (PointCloudSource &output, const Matrix4 &guess) |
| | Call the registration algorithm which estimates the transformation and returns the transformed source (input) as output. More...
|
| |
| const std::string & | getClassName () const |
| | Abstract class get name method. More...
|
| |
| bool | initCompute () |
| | Internal computation initialization. More...
|
| |
| bool | initComputeReciprocal () |
| | Internal computation when reciprocal lookup is needed. More...
|
| |
| void | addCorrespondenceRejector (const CorrespondenceRejectorPtr &rejector) |
| | Add a new correspondence rejector to the list. More...
|
| |
| std::vector< CorrespondenceRejectorPtr > | getCorrespondenceRejectors () |
| | Get the list of correspondence rejectors. More...
|
| |
| bool | removeCorrespondenceRejector (unsigned int i) |
| | Remove the i-th correspondence rejector in the list. More...
|
| |
| void | clearCorrespondenceRejectors () |
| | Clear the list of correspondence rejectors. More...
|
| |
| | PCLBase () |
| | Empty constructor. More...
|
| |
| | PCLBase (const PCLBase &base) |
| | Copy constructor. More...
|
| |
| virtual | ~PCLBase ()=default |
| | Destructor. More...
|
| |
| virtual void | setInputCloud (const PointCloudConstPtr &cloud) |
| | Provide a pointer to the input dataset. More...
|
| |
| PointCloudConstPtr const | getInputCloud () const |
| | Get a pointer to the input point cloud dataset. More...
|
| |
| virtual void | setIndices (const IndicesPtr &indices) |
| | Provide a pointer to the vector of indices that represents the input data. More...
|
| |
| virtual void | setIndices (const IndicesConstPtr &indices) |
| | Provide a pointer to the vector of indices that represents the input data. More...
|
| |
| virtual void | setIndices (const PointIndicesConstPtr &indices) |
| | Provide a pointer to the vector of indices that represents the input data. More...
|
| |
| virtual void | setIndices (std::size_t row_start, std::size_t col_start, std::size_t nb_rows, std::size_t nb_cols) |
| | Set the indices for the points laying within an interest region of the point cloud. More...
|
| |
| IndicesPtr | getIndices () |
| | Get a pointer to the vector of indices used. More...
|
| |
| IndicesConstPtr const | getIndices () const |
| | Get a pointer to the vector of indices used. More...
|
| |
| const PointSource & | operator[] (std::size_t pos) const |
| | Override PointCloud operator[] to shorten code. More...
|
| |
|
| std::size_t | x_idx_offset_ {0} |
| | XYZ fields offset. More...
|
| |
| std::size_t | y_idx_offset_ {0} |
| |
| std::size_t | z_idx_offset_ {0} |
| |
| std::size_t | nx_idx_offset_ {0} |
| | Normal fields offset. More...
|
| |
| std::size_t | ny_idx_offset_ {0} |
| |
| std::size_t | nz_idx_offset_ {0} |
| |
| bool | use_reciprocal_correspondence_ {false} |
| | The correspondence type used for correspondence estimation. More...
|
| |
| bool | source_has_normals_ {false} |
| | Internal check whether source dataset has normals or not. More...
|
| |
| bool | target_has_normals_ {false} |
| | Internal check whether target dataset has normals or not. More...
|
| |
| bool | need_source_blob_ |
| | Checks for whether estimators and rejectors need various data. More...
|
| |
| bool | need_target_blob_ |
| |
| std::string | reg_name_ |
| | The registration method name. More...
|
| |
| KdTreePtr | tree_ |
| | A pointer to the spatial search object. More...
|
| |
| KdTreeReciprocalPtr | tree_reciprocal_ |
| | A pointer to the spatial search object of the source. More...
|
| |
| int | nr_iterations_ |
| | The number of iterations the internal optimization ran for (used internally). More...
|
| |
| int | max_iterations_ |
| | The maximum number of iterations the internal optimization should run for. More...
|
| |
| int | ransac_iterations_ |
| | The number of iterations RANSAC should run for. More...
|
| |
| PointCloudTargetConstPtr | target_ |
| | The input point cloud dataset target. More...
|
| |
| Matrix4 | final_transformation_ |
| | The final transformation matrix estimated by the registration method after N iterations. More...
|
| |
| Matrix4 | transformation_ |
| | The transformation matrix estimated by the registration method. More...
|
| |
| Matrix4 | previous_transformation_ |
| | The previous transformation matrix estimated by the registration method (used internally). More...
|
| |
| double | transformation_epsilon_ |
| | The maximum difference between two consecutive transformations in order to consider convergence (user defined). More...
|
| |
| double | transformation_rotation_epsilon_ |
| | The maximum rotation difference between two consecutive transformations in order to consider convergence (user defined). More...
|
| |
| double | euclidean_fitness_epsilon_ |
| | The maximum allowed Euclidean error between two consecutive steps in the ICP loop, before the algorithm is considered to have converged. More...
|
| |
| double | corr_dist_threshold_ |
| | The maximum distance threshold between two correspondent points in source <-> target. More...
|
| |
| double | inlier_threshold_ |
| | The inlier distance threshold for the internal RANSAC outlier rejection loop. More...
|
| |
| bool | converged_ |
| | Holds internal convergence state, given user parameters. More...
|
| |
| unsigned int | min_number_correspondences_ |
| | The minimum number of correspondences that the algorithm needs before attempting to estimate the transformation. More...
|
| |
| CorrespondencesPtr | correspondences_ |
| | The set of correspondences determined at this ICP step. More...
|
| |
| TransformationEstimationPtr | transformation_estimation_ |
| | A TransformationEstimation object, used to calculate the 4x4 rigid transformation. More...
|
| |
| CorrespondenceEstimationPtr | correspondence_estimation_ |
| | A CorrespondenceEstimation object, used to estimate correspondences between the source and the target cloud. More...
|
| |
| std::vector< CorrespondenceRejectorPtr > | correspondence_rejectors_ |
| | The list of correspondence rejectors to use. More...
|
| |
| bool | target_cloud_updated_ |
| | Variable that stores whether we have a new target cloud, meaning we need to pre-process it again. More...
|
| |
| bool | source_cloud_updated_ |
| | Variable that stores whether we have a new source cloud, meaning we need to pre-process it again. More...
|
| |
| bool | force_no_recompute_ |
| | A flag which, if set, means the tree operating on the target cloud will never be recomputed. More...
|
| |
| bool | force_no_recompute_reciprocal_ |
| | A flag which, if set, means the tree operating on the source cloud will never be recomputed. More...
|
| |
| std::function< UpdateVisualizerCallbackSignature > | update_visualizer_ |
| | Callback function to update intermediate source point cloud position during it's registration to the target point cloud. More...
|
| |
| PointCloudConstPtr | input_ |
| | The input point cloud dataset. More...
|
| |
| IndicesPtr | indices_ |
| | A pointer to the vector of point indices to use. More...
|
| |
| bool | use_indices_ |
| | Set to true if point indices are used. More...
|
| |
| bool | fake_indices_ |
| | If no set of indices are given, we construct a set of fake indices that mimic the input PointCloud. More...
|
| |
template<typename PointSource, typename PointTarget, typename Scalar = float>
class pcl::IterativeClosestPoint< PointSource, PointTarget, Scalar >
IterativeClosestPoint provides a base implementation of the Iterative Closest Point algorithm.
The transformation is estimated based on Singular Value Decomposition (SVD).
The algorithm has several termination criteria:
-
Number of iterations has reached the maximum user imposed number of iterations (via setMaximumIterations)
-
The epsilon (difference) between the previous transformation and the current estimated transformation is smaller than an user imposed value (via setTransformationEpsilon)
-
The sum of Euclidean squared errors is smaller than a user defined threshold (via setEuclideanFitnessEpsilon)
Usage example:
IterativeClosestPoint<PointXYZ, PointXYZ> icp;
icp.setInputSource (cloud_source);
icp.setInputTarget (cloud_target);
icp.setMaxCorrespondenceDistance (0.05);
icp.setMaximumIterations (50);
icp.setTransformationEpsilon (1e-8);
icp.setEuclideanFitnessEpsilon (1);
icp.align (cloud_source_registered);
Eigen::Matrix4f transformation = icp.getFinalTransformation ();
- Author
- Radu B. Rusu, Michael Dixon
Definition at line 98 of file icp.h.