Point Cloud Library (PCL)  1.12.1-dev
ground_based_people_detection_app.h
1 /*
2  * Software License Agreement (BSD License)
3  *
4  * Point Cloud Library (PCL) - www.pointclouds.org
5  * Copyright (c) 2013-, Open Perception, Inc.
6  *
7  * All rights reserved.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  *
13  * * Redistributions of source code must retain the above copyright
14  * notice, this list of conditions and the following disclaimer.
15  * * Redistributions in binary form must reproduce the above
16  * copyright notice, this list of conditions and the following
17  * disclaimer in the documentation and/or other materials provided
18  * with the distribution.
19  * * Neither the name of the copyright holder(s) nor the names of its
20  * contributors may be used to endorse or promote products derived
21  * from this software without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
24  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
25  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
26  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
27  * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
28  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
29  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
30  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
31  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
33  * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
34  * POSSIBILITY OF SUCH DAMAGE.
35  *
36  * ground_based_people_detection_app.h
37  * Created on: Nov 30, 2012
38  * Author: Matteo Munaro
39  */
40 
41 #pragma once
42 
43 #include <pcl/point_types.h>
44 #include <pcl/sample_consensus/sac_model_plane.h>
45 #include <pcl/sample_consensus/ransac.h>
46 #include <pcl/kdtree/kdtree.h>
47 #include <pcl/people/person_cluster.h>
48 #include <pcl/people/head_based_subcluster.h>
49 #include <pcl/people/person_classifier.h>
50 #include <pcl/common/transforms.h>
51 
52 namespace pcl
53 {
54  namespace people
55  {
56  /** \brief GroundBasedPeopleDetectionApp performs people detection on RGB-D data having as input the ground plane coefficients.
57  * It implements the people detection algorithm described here:
58  * M. Munaro, F. Basso and E. Menegatti,
59  * Tracking people within groups with RGB-D data,
60  * In Proceedings of the International Conference on Intelligent Robots and Systems (IROS) 2012, Vilamoura (Portugal), 2012.
61  *
62  * \author Matteo Munaro
63  * \ingroup people
64  */
65  template <typename PointT> class GroundBasedPeopleDetectionApp;
66 
67  template <typename PointT>
69  {
70  public:
71 
73  using PointCloudPtr = typename PointCloud::Ptr;
75 
76  /** \brief Constructor. */
78 
79  /** \brief Destructor. */
81 
82  /**
83  * \brief Set the pointer to the input cloud.
84  *
85  * \param[in] cloud A pointer to the input cloud.
86  */
87  void
89 
90  /**
91  * \brief Set the ground coefficients.
92  *
93  * \param[in] ground_coeffs Vector containing the four plane coefficients.
94  */
95  void
96  setGround (Eigen::VectorXf& ground_coeffs);
97 
98  /**
99  * \brief Set the transformation matrix, which is used in order to transform the given point cloud, the ground plane and the intrinsics matrix to the internal coordinate frame.
100  * \param[in] transformation
101  */
102  void
103  setTransformation (const Eigen::Matrix3f& transformation);
104 
105  /**
106  * \brief Set sampling factor.
107  *
108  * \param[in] sampling_factor Value of the downsampling factor (in each dimension) which is applied to the raw point cloud (default = 1.).
109  */
110  void
111  setSamplingFactor (int sampling_factor);
112 
113  /**
114  * \brief Set voxel size.
115  *
116  * \param[in] voxel_size Value of the voxel dimension (default = 0.06m.).
117  */
118  void
119  setVoxelSize (float voxel_size);
120 
121  /**
122  * \brief Set intrinsic parameters of the RGB camera.
123  *
124  * \param[in] intrinsics_matrix RGB camera intrinsic parameters matrix.
125  */
126  void
127  setIntrinsics (Eigen::Matrix3f intrinsics_matrix);
128 
129  /**
130  * \brief Set SVM-based person classifier.
131  *
132  * \param[in] person_classifier Needed for people detection on RGB data.
133  */
134  void
136 
137  /**
138  * \brief Set the field of view of the point cloud in z direction.
139  *
140  * \param[in] min The beginning of the field of view in z-direction, should be usually set to zero.
141  * \param[in] max The end of the field of view in z-direction.
142  */
143  void
144  setFOV (float min, float max);
145 
146  /**
147  * \brief Set sensor orientation (vertical = true means portrait mode, vertical = false means landscape mode).
148  *
149  * \param[in] vertical Set landscape/portrait camera orientation (default = false).
150  */
151  void
152  setSensorPortraitOrientation (bool vertical);
153 
154  /**
155  * \brief Set head_centroid_ to true (person centroid is in the head) or false (person centroid is the whole body centroid).
156  *
157  * \param[in] head_centroid Set the location of the person centroid (head or body center) (default = true).
158  */
159  void
160  setHeadCentroid (bool head_centroid);
161 
162  /**
163  * \brief Set minimum and maximum allowed height and width for a person cluster.
164  *
165  * \param[in] min_height Minimum allowed height for a person cluster (default = 1.3).
166  * \param[in] max_height Maximum allowed height for a person cluster (default = 2.3).
167  * \param[in] min_width Minimum width for a person cluster (default = 0.1).
168  * \param[in] max_width Maximum width for a person cluster (default = 8.0).
169  */
170  void
171  setPersonClusterLimits (float min_height, float max_height, float min_width, float max_width);
172 
173  /**
174  * \brief Set minimum distance between persons' heads.
175  *
176  * \param[in] heads_minimum_distance Minimum allowed distance between persons' heads (default = 0.3).
177  */
178  void
179  setMinimumDistanceBetweenHeads (float heads_minimum_distance);
180 
181  /**
182  * \brief Get the minimum and maximum allowed height and width for a person cluster.
183  *
184  * \param[out] min_height Minimum allowed height for a person cluster.
185  * \param[out] max_height Maximum allowed height for a person cluster.
186  * \param[out] min_width Minimum width for a person cluster.
187  * \param[out] max_width Maximum width for a person cluster.
188  */
189  void
190  getPersonClusterLimits (float& min_height, float& max_height, float& min_width, float& max_width);
191 
192  /**
193  * \brief Get minimum and maximum allowed number of points for a person cluster.
194  *
195  * \param[out] min_points Minimum allowed number of points for a person cluster.
196  * \param[out] max_points Maximum allowed number of points for a person cluster.
197  */
198  void
199  getDimensionLimits (int& min_points, int& max_points);
200 
201  /**
202  * \brief Get minimum distance between persons' heads.
203  */
204  float
206 
207  /**
208  * \brief Get floor coefficients.
209  */
210  Eigen::VectorXf
211  getGround ();
212 
213  /**
214  * \brief Get the filtered point cloud.
215  */
217  getFilteredCloud ();
218 
219  /**
220  * \brief Get pointcloud after voxel grid filtering and ground removal.
221  */
223  getNoGroundCloud ();
224 
225  /**
226  * \brief Extract RGB information from a point cloud and output the corresponding RGB point cloud.
227  *
228  * \param[in] input_cloud A pointer to a point cloud containing also RGB information.
229  * \param[out] output_cloud A pointer to a RGB point cloud.
230  */
231  void
233 
234  /**
235  * \brief Swap rows/cols dimensions of a RGB point cloud (90 degrees counterclockwise rotation).
236  *
237  * \param[in,out] cloud A pointer to a RGB point cloud.
238  */
239  void
241 
242  /**
243  * \brief Estimates min_points_ and max_points_ based on the minimal and maximal cluster size and the voxel size.
244  */
245  void
247 
248  /**
249  * \brief Applies the transformation to the input point cloud.
250  */
251  void
253 
254  /**
255  * \brief Applies the transformation to the ground plane.
256  */
257  void
259 
260  /**
261  * \brief Applies the transformation to the intrinsics matrix.
262  */
263  void
265 
266  /**
267  * \brief Reduces the input cloud to one point per voxel and limits the field of view.
268  */
269  void
270  filter ();
271 
272  /**
273  * \brief Perform people detection on the input data and return people clusters information.
274  *
275  * \param[out] clusters Vector of PersonCluster.
276  *
277  * \return true if the compute operation is successful, false otherwise.
278  */
279  bool
280  compute (std::vector<pcl::people::PersonCluster<PointT> >& clusters);
281 
282  protected:
283  /** \brief sampling factor used to downsample the point cloud */
285 
286  /** \brief voxel size */
287  float voxel_size_;
288 
289  /** \brief ground plane coefficients */
290  Eigen::VectorXf ground_coeffs_;
291 
292  /** \brief flag stating whether the ground coefficients have been set or not */
294 
295  /** \brief the transformed ground coefficients */
296  Eigen::VectorXf ground_coeffs_transformed_;
297 
298  /** \brief ground plane normalization factor */
300 
301  /** \brief rotation matrix which transforms input point cloud to internal people tracker coordinate frame */
302  Eigen::Matrix3f transformation_;
303 
304  /** \brief flag stating whether the transformation matrix has been set or not */
306 
307  /** \brief pointer to the input cloud */
309 
310  /** \brief pointer to the filtered cloud */
312 
313  /** \brief pointer to the cloud after voxel grid filtering and ground removal */
315 
316  /** \brief pointer to a RGB cloud corresponding to cloud_ */
318 
319  /** \brief person clusters maximum height from the ground plane */
320  float max_height_;
321 
322  /** \brief person clusters minimum height from the ground plane */
323  float min_height_;
324 
325  /** \brief person clusters maximum width, used to estimate how many points maximally represent a person cluster */
326  float max_width_;
327 
328  /** \brief person clusters minimum width, used to estimate how many points minimally represent a person cluster */
329  float min_width_;
330 
331  /** \brief the beginning of the field of view in z-direction, should be usually set to zero */
332  float min_fov_;
333 
334  /** \brief the end of the field of view in z-direction */
335  float max_fov_;
336 
337  /** \brief if true, the sensor is considered to be vertically placed (portrait mode) */
338  bool vertical_;
339 
340  /** \brief if true, the person centroid is computed as the centroid of the cluster points belonging to the head;
341  * if false, the person centroid is computed as the centroid of the whole cluster points (default = true) */
342  bool head_centroid_; // if true, the person centroid is computed as the centroid of the cluster points belonging to the head (default = true)
343  // if false, the person centroid is computed as the centroid of the whole cluster points
344  /** \brief maximum number of points for a person cluster */
346 
347  /** \brief minimum number of points for a person cluster */
349 
350  /** \brief minimum distance between persons' heads */
352 
353  /** \brief intrinsic parameters matrix of the RGB camera */
354  Eigen::Matrix3f intrinsics_matrix_;
355 
356  /** \brief flag stating whether the intrinsics matrix has been set or not */
358 
359  /** \brief the transformed intrinsics matrix */
361 
362  /** \brief SVM-based person classifier */
364 
365  /** \brief flag stating if the classifier has been set or not */
367  };
368  } /* namespace people */
369 } /* namespace pcl */
370 #include <pcl/people/impl/ground_based_people_detection_app.hpp>
PointCloud represents the base class in PCL for storing collections of 3D points.
Definition: point_cloud.h:173
shared_ptr< PointCloud< PointT > > Ptr
Definition: point_cloud.h:413
shared_ptr< const PointCloud< PointT > > ConstPtr
Definition: point_cloud.h:414
GroundBasedPeopleDetectionApp performs people detection on RGB-D data having as input the ground plan...
void getDimensionLimits(int &min_points, int &max_points)
Get minimum and maximum allowed number of points for a person cluster.
PointCloudPtr getNoGroundCloud()
Get pointcloud after voxel grid filtering and ground removal.
void filter()
Reduces the input cloud to one point per voxel and limits the field of view.
float min_width_
person clusters minimum width, used to estimate how many points minimally represent a person cluster
void applyTransformationIntrinsics()
Applies the transformation to the intrinsics matrix.
PointCloudPtr cloud_filtered_
pointer to the filtered cloud
void setSamplingFactor(int sampling_factor)
Set sampling factor.
void extractRGBFromPointCloud(PointCloudPtr input_cloud, pcl::PointCloud< pcl::RGB >::Ptr &output_cloud)
Extract RGB information from a point cloud and output the corresponding RGB point cloud.
pcl::people::PersonClassifier< pcl::RGB > person_classifier_
SVM-based person classifier.
void setMinimumDistanceBetweenHeads(float heads_minimum_distance)
Set minimum distance between persons' heads.
float min_fov_
the beginning of the field of view in z-direction, should be usually set to zero
void setClassifier(pcl::people::PersonClassifier< pcl::RGB > person_classifier)
Set SVM-based person classifier.
void setHeadCentroid(bool head_centroid)
Set head_centroid_ to true (person centroid is in the head) or false (person centroid is the whole bo...
bool transformation_set_
flag stating whether the transformation matrix has been set or not
bool intrinsics_matrix_set_
flag stating whether the intrinsics matrix has been set or not
void setInputCloud(PointCloudPtr &cloud)
Set the pointer to the input cloud.
PointCloudPtr getFilteredCloud()
Get the filtered point cloud.
float max_fov_
the end of the field of view in z-direction
PointCloudPtr no_ground_cloud_
pointer to the cloud after voxel grid filtering and ground removal
float max_width_
person clusters maximum width, used to estimate how many points maximally represent a person cluster
void swapDimensions(pcl::PointCloud< pcl::RGB >::Ptr &cloud)
Swap rows/cols dimensions of a RGB point cloud (90 degrees counterclockwise rotation).
void setGround(Eigen::VectorXf &ground_coeffs)
Set the ground coefficients.
void updateMinMaxPoints()
Estimates min_points_ and max_points_ based on the minimal and maximal cluster size and the voxel siz...
void applyTransformationPointCloud()
Applies the transformation to the input point cloud.
void setIntrinsics(Eigen::Matrix3f intrinsics_matrix)
Set intrinsic parameters of the RGB camera.
void getPersonClusterLimits(float &min_height, float &max_height, float &min_width, float &max_width)
Get the minimum and maximum allowed height and width for a person cluster.
float sqrt_ground_coeffs_
ground plane normalization factor
Eigen::VectorXf ground_coeffs_transformed_
the transformed ground coefficients
Eigen::VectorXf ground_coeffs_
ground plane coefficients
void setFOV(float min, float max)
Set the field of view of the point cloud in z direction.
int max_points_
maximum number of points for a person cluster
void setPersonClusterLimits(float min_height, float max_height, float min_width, float max_width)
Set minimum and maximum allowed height and width for a person cluster.
Eigen::Matrix3f intrinsics_matrix_transformed_
the transformed intrinsics matrix
Eigen::Matrix3f intrinsics_matrix_
intrinsic parameters matrix of the RGB camera
void setTransformation(const Eigen::Matrix3f &transformation)
Set the transformation matrix, which is used in order to transform the given point cloud,...
bool person_classifier_set_flag_
flag stating if the classifier has been set or not
float getMinimumDistanceBetweenHeads()
Get minimum distance between persons' heads.
float min_height_
person clusters minimum height from the ground plane
Eigen::Matrix3f transformation_
rotation matrix which transforms input point cloud to internal people tracker coordinate frame
void applyTransformationGround()
Applies the transformation to the ground plane.
virtual ~GroundBasedPeopleDetectionApp()
Destructor.
float heads_minimum_distance_
minimum distance between persons' heads
bool compute(std::vector< pcl::people::PersonCluster< PointT > > &clusters)
Perform people detection on the input data and return people clusters information.
pcl::PointCloud< pcl::RGB >::Ptr rgb_image_
pointer to a RGB cloud corresponding to cloud_
float max_height_
person clusters maximum height from the ground plane
bool ground_coeffs_set_
flag stating whether the ground coefficients have been set or not
void setSensorPortraitOrientation(bool vertical)
Set sensor orientation (vertical = true means portrait mode, vertical = false means landscape mode).
bool head_centroid_
if true, the person centroid is computed as the centroid of the cluster points belonging to the head;...
int min_points_
minimum number of points for a person cluster
int sampling_factor_
sampling factor used to downsample the point cloud
bool vertical_
if true, the sensor is considered to be vertically placed (portrait mode)
PersonCluster represents a class for representing information about a cluster containing a person.
Defines all the PCL implemented PointT point type structures.