Point Cloud Library (PCL)  1.14.0-dev
range_image.hpp
1 /*
2  * Software License Agreement (BSD License)
3  *
4  * Point Cloud Library (PCL) - www.pointclouds.org
5  * Copyright (c) 2010-2012, Willow Garage, Inc.
6  * Copyright (c) 2012-, Open Perception, Inc.
7  *
8  * All rights reserved.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  *
14  * * Redistributions of source code must retain the above copyright
15  * notice, this list of conditions and the following disclaimer.
16  * * Redistributions in binary form must reproduce the above
17  * copyright notice, this list of conditions and the following
18  * disclaimer in the documentation and/or other materials provided
19  * with the distribution.
20  * * Neither the name of the copyright holder(s) nor the names of its
21  * contributors may be used to endorse or promote products derived
22  * from this software without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
25  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
26  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
27  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
28  * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
29  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
30  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
31  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
32  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
34  * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35  * POSSIBILITY OF SUCH DAMAGE.
36  *
37  */
38 
39 #pragma once
40 
41 #include <pcl/range_image/range_image.h>
42 
43 #include <pcl/pcl_macros.h>
44 #include <pcl/common/distances.h>
45 #include <pcl/common/point_tests.h> // for pcl::isFinite
46 #include <pcl/common/vector_average.h> // for VectorAverage3f
47 #include <vector>
48 
49 namespace pcl
50 {
51 
52 /////////////////////////////////////////////////////////////////////////
53 inline float
55 {
56  return (asin_lookup_table[
57  static_cast<int> (
58  static_cast<float> (pcl_lrintf ( (static_cast<float> (lookup_table_size-1) / 2.0f) * value)) +
59  static_cast<float> (lookup_table_size-1) / 2.0f)]);
60 }
61 
62 /////////////////////////////////////////////////////////////////////////
63 inline float
64 RangeImage::atan2LookUp (float y, float x)
65 {
66  if (x==0 && y==0)
67  return 0;
68  float ret;
69  if (std::abs (x) < std::abs (y))
70  {
71  ret = atan_lookup_table[
72  static_cast<int> (
73  static_cast<float> (pcl_lrintf ( (static_cast<float> (lookup_table_size-1) / 2.0f) * (x / y))) +
74  static_cast<float> (lookup_table_size-1) / 2.0f)];
75  ret = static_cast<float> (x*y > 0 ? M_PI/2-ret : -M_PI/2-ret);
76  }
77  else
78  ret = atan_lookup_table[
79  static_cast<int> (
80  static_cast<float> (pcl_lrintf ( (static_cast<float> (lookup_table_size-1) / 2.0f) * (y / x))) +
81  static_cast<float> (lookup_table_size-1)/2.0f)];
82  if (x < 0)
83  ret = static_cast<float> (y < 0 ? ret-M_PI : ret+M_PI);
84 
85  return (ret);
86 }
87 
88 /////////////////////////////////////////////////////////////////////////
89 inline float
90 RangeImage::cosLookUp (float value)
91 {
92  int cell_idx = static_cast<int> (pcl_lrintf ( (static_cast<float> (lookup_table_size-1)) * std::abs (value) / (2.0f * static_cast<float> (M_PI))));
93  return (cos_lookup_table[cell_idx]);
94 }
95 
96 /////////////////////////////////////////////////////////////////////////
97 template <typename PointCloudType> void
98 RangeImage::createFromPointCloud (const PointCloudType& point_cloud, float angular_resolution,
99  float max_angle_width, float max_angle_height,
100  const Eigen::Affine3f& sensor_pose, RangeImage::CoordinateFrame coordinate_frame,
101  float noise_level, float min_range, int border_size)
102 {
103  createFromPointCloud (point_cloud, angular_resolution, angular_resolution, max_angle_width, max_angle_height,
104  sensor_pose, coordinate_frame, noise_level, min_range, border_size);
105 }
106 
107 /////////////////////////////////////////////////////////////////////////
108 template <typename PointCloudType> void
109 RangeImage::createFromPointCloud (const PointCloudType& point_cloud,
110  float angular_resolution_x, float angular_resolution_y,
111  float max_angle_width, float max_angle_height,
112  const Eigen::Affine3f& sensor_pose, RangeImage::CoordinateFrame coordinate_frame,
113  float noise_level, float min_range, int border_size)
114 {
115  setAngularResolution (angular_resolution_x, angular_resolution_y);
116 
117  width = static_cast<std::uint32_t> (pcl_lrint (std::floor (max_angle_width*angular_resolution_x_reciprocal_)));
118  height = static_cast<std::uint32_t> (pcl_lrint (std::floor (max_angle_height*angular_resolution_y_reciprocal_)));
119 
120  int full_width = static_cast<int> (pcl_lrint (std::floor (pcl::deg2rad (360.0f)*angular_resolution_x_reciprocal_))),
121  full_height = static_cast<int> (pcl_lrint (std::floor (pcl::deg2rad (180.0f)*angular_resolution_y_reciprocal_)));
122  image_offset_x_ = (full_width -static_cast<int> (width) )/2;
123  image_offset_y_ = (full_height-static_cast<int> (height))/2;
124  is_dense = false;
125 
127  to_world_system_ = sensor_pose * to_world_system_;
128 
129  to_range_image_system_ = to_world_system_.inverse (Eigen::Isometry);
130  //std::cout << "to_world_system_ is\n"<<to_world_system_<<"\nand to_range_image_system_ is\n"<<to_range_image_system_<<"\n\n";
131 
132  unsigned int size = width*height;
133  points.clear ();
134  points.resize (size, unobserved_point);
135 
136  int top=height, right=-1, bottom=-1, left=width;
137  doZBuffer (point_cloud, noise_level, min_range, top, right, bottom, left);
138 
139  if (border_size != std::numeric_limits<int>::min()) {
140  cropImage (border_size, top, right, bottom, left);
141 
143  }
144 }
145 
146 /////////////////////////////////////////////////////////////////////////
147 template <typename PointCloudType> void
148 RangeImage::createFromPointCloudWithKnownSize (const PointCloudType& point_cloud, float angular_resolution,
149  const Eigen::Vector3f& point_cloud_center, float point_cloud_radius,
150  const Eigen::Affine3f& sensor_pose, RangeImage::CoordinateFrame coordinate_frame,
151  float noise_level, float min_range, int border_size)
152 {
153  createFromPointCloudWithKnownSize (point_cloud, angular_resolution, angular_resolution, point_cloud_center, point_cloud_radius,
154  sensor_pose, coordinate_frame, noise_level, min_range, border_size);
155 }
156 
157 /////////////////////////////////////////////////////////////////////////
158 template <typename PointCloudType> void
159 RangeImage::createFromPointCloudWithKnownSize (const PointCloudType& point_cloud,
160  float angular_resolution_x, float angular_resolution_y,
161  const Eigen::Vector3f& point_cloud_center, float point_cloud_radius,
162  const Eigen::Affine3f& sensor_pose, RangeImage::CoordinateFrame coordinate_frame,
163  float noise_level, float min_range, int border_size)
164 {
165  //MEASURE_FUNCTION_TIME;
166 
167  //std::cout << "Starting to create range image from "<<point_cloud.size ()<<" points.\n";
168 
169  // If the sensor pose is inside of the sphere we have to calculate the image the normal way
170  if ((point_cloud_center-sensor_pose.translation()).norm() <= point_cloud_radius) {
171  createFromPointCloud (point_cloud, angular_resolution_x, angular_resolution_y,
172  pcl::deg2rad (360.0f), pcl::deg2rad (180.0f),
173  sensor_pose, coordinate_frame, noise_level, min_range, border_size);
174  return;
175  }
176 
177  setAngularResolution (angular_resolution_x, angular_resolution_y);
178 
180  to_world_system_ = sensor_pose * to_world_system_;
181  to_range_image_system_ = to_world_system_.inverse (Eigen::Isometry);
182 
183  float max_angle_size = getMaxAngleSize (sensor_pose, point_cloud_center, point_cloud_radius);
184  int pixel_radius_x = pcl_lrint (std::ceil (0.5f*max_angle_size*angular_resolution_x_reciprocal_)),
185  pixel_radius_y = pcl_lrint (std::ceil (0.5f*max_angle_size*angular_resolution_y_reciprocal_));
186  width = 2*pixel_radius_x;
187  height = 2*pixel_radius_y;
188  is_dense = false;
189 
190  image_offset_x_ = image_offset_y_ = 0; // temporary values for getImagePoint
191  int center_pixel_x, center_pixel_y;
192  getImagePoint (point_cloud_center, center_pixel_x, center_pixel_y);
193  image_offset_x_ = (std::max) (0, center_pixel_x-pixel_radius_x);
194  image_offset_y_ = (std::max) (0, center_pixel_y-pixel_radius_y);
195 
196  points.clear ();
198 
199  int top=height, right=-1, bottom=-1, left=width;
200  doZBuffer (point_cloud, noise_level, min_range, top, right, bottom, left);
201 
202  if (border_size != std::numeric_limits<int>::min()) {
203  cropImage (border_size, top, right, bottom, left);
204 
206  }
207 }
208 
209 /////////////////////////////////////////////////////////////////////////
210 template <typename PointCloudTypeWithViewpoints> void
211 RangeImage::createFromPointCloudWithViewpoints (const PointCloudTypeWithViewpoints& point_cloud,
212  float angular_resolution,
213  float max_angle_width, float max_angle_height,
214  RangeImage::CoordinateFrame coordinate_frame,
215  float noise_level, float min_range, int border_size)
216 {
217  createFromPointCloudWithViewpoints (point_cloud, angular_resolution, angular_resolution,
218  max_angle_width, max_angle_height, coordinate_frame,
219  noise_level, min_range, border_size);
220 }
221 
222 /////////////////////////////////////////////////////////////////////////
223 template <typename PointCloudTypeWithViewpoints> void
224 RangeImage::createFromPointCloudWithViewpoints (const PointCloudTypeWithViewpoints& point_cloud,
225  float angular_resolution_x, float angular_resolution_y,
226  float max_angle_width, float max_angle_height,
227  RangeImage::CoordinateFrame coordinate_frame,
228  float noise_level, float min_range, int border_size)
229 {
230  Eigen::Vector3f average_viewpoint = getAverageViewPoint (point_cloud);
231  Eigen::Affine3f sensor_pose = static_cast<Eigen::Affine3f> (Eigen::Translation3f (average_viewpoint));
232  createFromPointCloud (point_cloud, angular_resolution_x, angular_resolution_y, max_angle_width, max_angle_height,
233  sensor_pose, coordinate_frame, noise_level, min_range, border_size);
234 }
235 
236 /////////////////////////////////////////////////////////////////////////
237 template <typename PointCloudType> void
238 RangeImage::doZBuffer (const PointCloudType& point_cloud, float noise_level, float min_range, int& top, int& right, int& bottom, int& left)
239 {
240  using PointType2 = typename PointCloudType::PointType;
241  const typename pcl::PointCloud<PointType2>::VectorType &points2 = point_cloud.points;
242 
243  unsigned int size = width*height;
244  std::vector<int> counters(size, 0);
245 
246  top=height; right=-1; bottom=-1; left=width;
247 
248  float x_real, y_real, range_of_current_point;
249  int x, y;
250  for (const auto& point: points2)
251  {
252  if (!isFinite (point)) // Check for NAN etc
253  continue;
254  Vector3fMapConst current_point = point.getVector3fMap ();
255 
256  this->getImagePoint (current_point, x_real, y_real, range_of_current_point);
257  this->real2DToInt2D (x_real, y_real, x, y);
258 
259  if (range_of_current_point < min_range|| !isInImage (x, y))
260  continue;
261  //std::cout << " ("<<current_point[0]<<", "<<current_point[1]<<", "<<current_point[2]<<") falls into pixel "<<x<<","<<y<<".\n";
262 
263  // Do some minor interpolation by checking the three closest neighbors to the point, that are not filled yet.
264  int floor_x = pcl_lrint (std::floor (x_real)), floor_y = pcl_lrint (std::floor (y_real)),
265  ceil_x = pcl_lrint (std::ceil (x_real)), ceil_y = pcl_lrint (std::ceil (y_real));
266 
267  int neighbor_x[4], neighbor_y[4];
268  neighbor_x[0]=floor_x; neighbor_y[0]=floor_y;
269  neighbor_x[1]=floor_x; neighbor_y[1]=ceil_y;
270  neighbor_x[2]=ceil_x; neighbor_y[2]=floor_y;
271  neighbor_x[3]=ceil_x; neighbor_y[3]=ceil_y;
272  //std::cout << x_real<<","<<y_real<<": ";
273 
274  for (int i=0; i<4; ++i)
275  {
276  int n_x=neighbor_x[i], n_y=neighbor_y[i];
277  //std::cout << n_x<<","<<n_y<<" ";
278  if (n_x==x && n_y==y)
279  continue;
280  if (isInImage (n_x, n_y))
281  {
282  int neighbor_array_pos = n_y*width + n_x;
283  if (counters[neighbor_array_pos] == 0)
284  {
285  float& neighbor_range = points[neighbor_array_pos].range;
286  neighbor_range = (std::isinf (neighbor_range) ? range_of_current_point : (std::min) (neighbor_range, range_of_current_point));
287  top= (std::min) (top, n_y); right= (std::max) (right, n_x); bottom= (std::max) (bottom, n_y); left= (std::min) (left, n_x);
288  }
289  }
290  }
291  //std::cout <<std::endl;
292 
293  // The point itself
294  int arrayPos = y*width + x;
295  float& range_at_image_point = points[arrayPos].range;
296  int& counter = counters[arrayPos];
297  bool addCurrentPoint=false, replace_with_current_point=false;
298 
299  if (counter==0)
300  {
301  replace_with_current_point = true;
302  }
303  else
304  {
305  if (range_of_current_point < range_at_image_point-noise_level)
306  {
307  replace_with_current_point = true;
308  }
309  else if (std::fabs (range_of_current_point-range_at_image_point)<=noise_level)
310  {
311  addCurrentPoint = true;
312  }
313  }
314 
315  if (replace_with_current_point)
316  {
317  counter = 1;
318  range_at_image_point = range_of_current_point;
319  top= (std::min) (top, y); right= (std::max) (right, x); bottom= (std::max) (bottom, y); left= (std::min) (left, x);
320  //std::cout << "Adding point "<<x<<","<<y<<"\n";
321  }
322  else if (addCurrentPoint)
323  {
324  ++counter;
325  range_at_image_point += (range_of_current_point-range_at_image_point)/counter;
326  }
327  }
328 }
329 
330 /////////////////////////////////////////////////////////////////////////
331 void
332 RangeImage::getImagePoint (float x, float y, float z, float& image_x, float& image_y, float& range) const
333 {
334  Eigen::Vector3f point (x, y, z);
335  getImagePoint (point, image_x, image_y, range);
336 }
337 
338 /////////////////////////////////////////////////////////////////////////
339 void
340 RangeImage::getImagePoint (float x, float y, float z, float& image_x, float& image_y) const
341 {
342  float range;
343  getImagePoint (x, y, z, image_x, image_y, range);
344 }
345 
346 /////////////////////////////////////////////////////////////////////////
347 void
348 RangeImage::getImagePoint (float x, float y, float z, int& image_x, int& image_y) const
349 {
350  float image_x_float, image_y_float;
351  getImagePoint (x, y, z, image_x_float, image_y_float);
352  real2DToInt2D (image_x_float, image_y_float, image_x, image_y);
353 }
354 
355 /////////////////////////////////////////////////////////////////////////
356 void
357 RangeImage::getImagePoint (const Eigen::Vector3f& point, float& image_x, float& image_y, float& range) const
358 {
359  Eigen::Vector3f transformedPoint = to_range_image_system_ * point;
360  range = transformedPoint.norm ();
361  if (range < std::numeric_limits<float>::epsilon()) {
362  PCL_DEBUG ("[pcl::RangeImage::getImagePoint] Transformed point is (0,0,0), cannot project it.\n");
363  image_x = image_y = 0.0f;
364  return;
365  }
366  float angle_x = atan2LookUp (transformedPoint[0], transformedPoint[2]),
367  angle_y = asinLookUp (transformedPoint[1]/range);
368  getImagePointFromAngles (angle_x, angle_y, image_x, image_y);
369  //std::cout << " ("<<point[0]<<","<<point[1]<<","<<point[2]<<")"
370  //<< " => ("<<transformedPoint[0]<<","<<transformedPoint[1]<<","<<transformedPoint[2]<<")"
371  //<< " => "<<angle_x<<","<<angle_y<<" => "<<image_x<<","<<image_y<<"\n";
372 }
373 
374 /////////////////////////////////////////////////////////////////////////
375 void
376 RangeImage::getImagePoint (const Eigen::Vector3f& point, int& image_x, int& image_y, float& range) const {
377  float image_x_float, image_y_float;
378  getImagePoint (point, image_x_float, image_y_float, range);
379  real2DToInt2D (image_x_float, image_y_float, image_x, image_y);
380 }
381 
382 /////////////////////////////////////////////////////////////////////////
383 void
384 RangeImage::getImagePoint (const Eigen::Vector3f& point, float& image_x, float& image_y) const
385 {
386  float range;
387  getImagePoint (point, image_x, image_y, range);
388 }
389 
390 /////////////////////////////////////////////////////////////////////////
391 void
392 RangeImage::getImagePoint (const Eigen::Vector3f& point, int& image_x, int& image_y) const
393 {
394  float image_x_float, image_y_float;
395  getImagePoint (point, image_x_float, image_y_float);
396  real2DToInt2D (image_x_float, image_y_float, image_x, image_y);
397 }
398 
399 /////////////////////////////////////////////////////////////////////////
400 float
401 RangeImage::checkPoint (const Eigen::Vector3f& point, PointWithRange& point_in_image) const
402 {
403  int image_x, image_y;
404  float range;
405  getImagePoint (point, image_x, image_y, range);
406  if (!isInImage (image_x, image_y))
407  point_in_image = unobserved_point;
408  else
409  point_in_image = getPoint (image_x, image_y);
410  return range;
411 }
412 
413 /////////////////////////////////////////////////////////////////////////
414 float
415 RangeImage::getRangeDifference (const Eigen::Vector3f& point) const
416 {
417  int image_x, image_y;
418  float range;
419  getImagePoint (point, image_x, image_y, range);
420  if (!isInImage (image_x, image_y))
421  return -std::numeric_limits<float>::infinity ();
422  float image_point_range = getPoint (image_x, image_y).range;
423  if (std::isinf (image_point_range))
424  {
425  if (image_point_range > 0.0f)
426  return std::numeric_limits<float>::infinity ();
427  return -std::numeric_limits<float>::infinity ();
428  }
429  return image_point_range - range;
430 }
431 
432 /////////////////////////////////////////////////////////////////////////
433 void
434 RangeImage::getImagePointFromAngles (float angle_x, float angle_y, float& image_x, float& image_y) const
435 {
436  image_x = (angle_x*cosLookUp (angle_y) + static_cast<float> (M_PI))*angular_resolution_x_reciprocal_ - static_cast<float> (image_offset_x_);
437  image_y = (angle_y + 0.5f*static_cast<float> (M_PI))*angular_resolution_y_reciprocal_ - static_cast<float> (image_offset_y_);
438 }
439 
440 /////////////////////////////////////////////////////////////////////////
441 void
442 RangeImage::real2DToInt2D (float x, float y, int& xInt, int& yInt) const
443 {
444  xInt = static_cast<int> (pcl_lrintf (x));
445  yInt = static_cast<int> (pcl_lrintf (y));
446 }
447 
448 /////////////////////////////////////////////////////////////////////////
449 bool
450 RangeImage::isInImage (int x, int y) const
451 {
452  return (x >= 0 && x < static_cast<int> (width) && y >= 0 && y < static_cast<int> (height));
453 }
454 
455 /////////////////////////////////////////////////////////////////////////
456 bool
457 RangeImage::isValid (int x, int y) const
458 {
459  return isInImage (x,y) && std::isfinite (getPoint (x,y).range);
460 }
461 
462 /////////////////////////////////////////////////////////////////////////
463 bool
464 RangeImage::isValid (int index) const
465 {
466  return std::isfinite (getPoint (index).range);
467 }
468 
469 /////////////////////////////////////////////////////////////////////////
470 bool
471 RangeImage::isObserved (int x, int y) const
472 {
473  return !(!isInImage (x,y) || (std::isinf (getPoint (x,y).range) && getPoint (x,y).range < 0.0f));
474 }
475 
476 /////////////////////////////////////////////////////////////////////////
477 bool
478 RangeImage::isMaxRange (int x, int y) const
479 {
480  float range = getPoint (x,y).range;
481  return std::isinf (range) && range>0.0f;
482 }
483 
484 /////////////////////////////////////////////////////////////////////////
485 const PointWithRange&
486 RangeImage::getPoint (int image_x, int image_y) const
487 {
488  if (!isInImage (image_x, image_y))
489  return unobserved_point;
490  return points[image_y*width + image_x];
491 }
492 
493 /////////////////////////////////////////////////////////////////////////
494 const PointWithRange&
495 RangeImage::getPointNoCheck (int image_x, int image_y) const
496 {
497  return points[image_y*width + image_x];
498 }
499 
500 /////////////////////////////////////////////////////////////////////////
502 RangeImage::getPointNoCheck (int image_x, int image_y)
503 {
504  return points[image_y*width + image_x];
505 }
506 
507 /////////////////////////////////////////////////////////////////////////
509 RangeImage::getPoint (int image_x, int image_y)
510 {
511  return points[image_y*width + image_x];
512 }
513 
514 
515 /////////////////////////////////////////////////////////////////////////
516 const PointWithRange&
517 RangeImage::getPoint (int index) const
518 {
519  return points[index];
520 }
521 
522 /////////////////////////////////////////////////////////////////////////
523 const PointWithRange&
524 RangeImage::getPoint (float image_x, float image_y) const
525 {
526  int x, y;
527  real2DToInt2D (image_x, image_y, x, y);
528  return getPoint (x, y);
529 }
530 
531 /////////////////////////////////////////////////////////////////////////
533 RangeImage::getPoint (float image_x, float image_y)
534 {
535  int x, y;
536  real2DToInt2D (image_x, image_y, x, y);
537  return getPoint (x, y);
538 }
539 
540 /////////////////////////////////////////////////////////////////////////
541 void
542 RangeImage::getPoint (int image_x, int image_y, Eigen::Vector3f& point) const
543 {
544  //std::cout << getPoint (image_x, image_y)<< " - " << getPoint (image_x, image_y).getVector3fMap ()<<"\n";
545  point = getPoint (image_x, image_y).getVector3fMap ();
546 }
547 
548 /////////////////////////////////////////////////////////////////////////
549 void
550 RangeImage::getPoint (int index, Eigen::Vector3f& point) const
551 {
552  point = getPoint (index).getVector3fMap ();
553 }
554 
555 /////////////////////////////////////////////////////////////////////////
556 const Eigen::Map<const Eigen::Vector3f>
557 RangeImage::getEigenVector3f (int x, int y) const
558 {
559  return getPoint (x, y).getVector3fMap ();
560 }
561 
562 /////////////////////////////////////////////////////////////////////////
563 const Eigen::Map<const Eigen::Vector3f>
565 {
566  return getPoint (index).getVector3fMap ();
567 }
568 
569 /////////////////////////////////////////////////////////////////////////
570 void
571 RangeImage::calculate3DPoint (float image_x, float image_y, float range, Eigen::Vector3f& point) const
572 {
573  float angle_x, angle_y;
574  //std::cout << image_x<<","<<image_y<<","<<range;
575  getAnglesFromImagePoint (image_x, image_y, angle_x, angle_y);
576 
577  float cosY = std::cos (angle_y);
578  point = Eigen::Vector3f (range * sinf (angle_x) * cosY, range * sinf (angle_y), range * std::cos (angle_x)*cosY);
579  point = to_world_system_ * point;
580 }
581 
582 /////////////////////////////////////////////////////////////////////////
583 void
584 RangeImage::calculate3DPoint (float image_x, float image_y, Eigen::Vector3f& point) const
585 {
586  const PointWithRange& point_in_image = getPoint (image_x, image_y);
587  calculate3DPoint (image_x, image_y, point_in_image.range, point);
588 }
589 
590 /////////////////////////////////////////////////////////////////////////
591 void
592 RangeImage::calculate3DPoint (float image_x, float image_y, float range, PointWithRange& point) const {
593  point.range = range;
594  Eigen::Vector3f tmp_point;
595  calculate3DPoint (image_x, image_y, range, tmp_point);
596  point.x=tmp_point[0]; point.y=tmp_point[1]; point.z=tmp_point[2];
597 }
598 
599 /////////////////////////////////////////////////////////////////////////
600 void
601 RangeImage::calculate3DPoint (float image_x, float image_y, PointWithRange& point) const
602 {
603  const PointWithRange& point_in_image = getPoint (image_x, image_y);
604  calculate3DPoint (image_x, image_y, point_in_image.range, point);
605 }
606 
607 /////////////////////////////////////////////////////////////////////////
608 void
609 RangeImage::getAnglesFromImagePoint (float image_x, float image_y, float& angle_x, float& angle_y) const
610 {
611  angle_y = (image_y+static_cast<float> (image_offset_y_))*angular_resolution_y_ - 0.5f*static_cast<float> (M_PI);
612  float cos_angle_y = std::cos (angle_y);
613  angle_x = (cos_angle_y==0.0f ? 0.0f : ( (image_x+ static_cast<float> (image_offset_x_))*angular_resolution_x_ - static_cast<float> (M_PI))/cos_angle_y);
614 }
615 
616 /////////////////////////////////////////////////////////////////////////
617 float
618 RangeImage::getImpactAngle (int x1, int y1, int x2, int y2) const
619 {
620  if (!isInImage (x1, y1) || !isInImage (x2,y2))
621  return -std::numeric_limits<float>::infinity ();
622  return getImpactAngle (getPoint (x1,y1),getPoint (x2,y2));
623 }
624 
625 /////////////////////////////////////////////////////////////////////////
626 float
627 RangeImage::getImpactAngle (const PointWithRange& point1, const PointWithRange& point2) const {
628  if ( (std::isinf (point1.range)&&point1.range<0) || (std::isinf (point2.range)&&point2.range<0))
629  return -std::numeric_limits<float>::infinity ();
630 
631  float r1 = (std::min) (point1.range, point2.range),
632  r2 = (std::max) (point1.range, point2.range);
633  float impact_angle = static_cast<float> (0.5f * M_PI);
634 
635  if (std::isinf (r2))
636  {
637  if (r2 > 0.0f && !std::isinf (r1))
638  impact_angle = 0.0f;
639  }
640  else if (!std::isinf (r1))
641  {
642  float r1Sqr = r1*r1,
643  r2Sqr = r2*r2,
644  dSqr = squaredEuclideanDistance (point1, point2),
645  d = std::sqrt (dSqr);
646  float cos_impact_angle = (r2Sqr + dSqr - r1Sqr)/ (2.0f*r2*d);
647  cos_impact_angle = (std::max) (0.0f, (std::min) (1.0f, cos_impact_angle));
648  impact_angle = std::acos (cos_impact_angle); // Using the cosine rule
649  }
650 
651  if (point1.range > point2.range)
652  impact_angle = -impact_angle;
653 
654  return impact_angle;
655 }
656 
657 /////////////////////////////////////////////////////////////////////////
658 float
659 RangeImage::getAcutenessValue (const PointWithRange& point1, const PointWithRange& point2) const
660 {
661  float impact_angle = getImpactAngle (point1, point2);
662  if (std::isinf (impact_angle))
663  return -std::numeric_limits<float>::infinity ();
664  float ret = 1.0f - static_cast<float>(std::fabs (impact_angle)/ (0.5f*M_PI));
665  if (impact_angle < 0.0f)
666  ret = -ret;
667  //if (std::abs (ret)>1)
668  //std::cout << PVARAC (impact_angle)<<PVARN (ret);
669  return ret;
670 }
671 
672 /////////////////////////////////////////////////////////////////////////
673 float
674 RangeImage::getAcutenessValue (int x1, int y1, int x2, int y2) const
675 {
676  if (!isInImage (x1, y1) || !isInImage (x2,y2))
677  return -std::numeric_limits<float>::infinity ();
678  return getAcutenessValue (getPoint (x1,y1), getPoint (x2,y2));
679 }
680 
681 /////////////////////////////////////////////////////////////////////////
682 const Eigen::Vector3f
684 {
685  return {to_world_system_ (0,3), to_world_system_ (1,3), to_world_system_ (2,3)};
686 }
687 
688 /////////////////////////////////////////////////////////////////////////
689 void
690 RangeImage::getSurfaceAngleChange (int x, int y, int radius, float& angle_change_x, float& angle_change_y) const
691 {
692  angle_change_x = angle_change_y = -std::numeric_limits<float>::infinity ();
693  if (!isValid (x,y))
694  return;
695  Eigen::Vector3f point;
696  getPoint (x, y, point);
697  Eigen::Affine3f transformation = getTransformationToViewerCoordinateFrame (point);
698 
699  if (isObserved (x-radius, y) && isObserved (x+radius, y))
700  {
701  Eigen::Vector3f transformed_left;
702  if (isMaxRange (x-radius, y))
703  transformed_left = Eigen::Vector3f (0.0f, 0.0f, -1.0f);
704  else
705  {
706  Eigen::Vector3f left;
707  getPoint (x-radius, y, left);
708  transformed_left = - (transformation * left);
709  //std::cout << PVARN (transformed_left[1]);
710  transformed_left[1] = 0.0f;
711  transformed_left.normalize ();
712  }
713 
714  Eigen::Vector3f transformed_right;
715  if (isMaxRange (x+radius, y))
716  transformed_right = Eigen::Vector3f (0.0f, 0.0f, 1.0f);
717  else
718  {
719  Eigen::Vector3f right;
720  getPoint (x+radius, y, right);
721  transformed_right = transformation * right;
722  //std::cout << PVARN (transformed_right[1]);
723  transformed_right[1] = 0.0f;
724  transformed_right.normalize ();
725  }
726  angle_change_x = transformed_left.dot (transformed_right);
727  angle_change_x = (std::max) (0.0f, (std::min) (1.0f, angle_change_x));
728  angle_change_x = std::acos (angle_change_x);
729  }
730 
731  if (isObserved (x, y-radius) && isObserved (x, y+radius))
732  {
733  Eigen::Vector3f transformed_top;
734  if (isMaxRange (x, y-radius))
735  transformed_top = Eigen::Vector3f (0.0f, 0.0f, -1.0f);
736  else
737  {
738  Eigen::Vector3f top;
739  getPoint (x, y-radius, top);
740  transformed_top = - (transformation * top);
741  //std::cout << PVARN (transformed_top[0]);
742  transformed_top[0] = 0.0f;
743  transformed_top.normalize ();
744  }
745 
746  Eigen::Vector3f transformed_bottom;
747  if (isMaxRange (x, y+radius))
748  transformed_bottom = Eigen::Vector3f (0.0f, 0.0f, 1.0f);
749  else
750  {
751  Eigen::Vector3f bottom;
752  getPoint (x, y+radius, bottom);
753  transformed_bottom = transformation * bottom;
754  //std::cout << PVARN (transformed_bottom[0]);
755  transformed_bottom[0] = 0.0f;
756  transformed_bottom.normalize ();
757  }
758  angle_change_y = transformed_top.dot (transformed_bottom);
759  angle_change_y = (std::max) (0.0f, (std::min) (1.0f, angle_change_y));
760  angle_change_y = std::acos (angle_change_y);
761  }
762 }
763 
764 
765 //inline float RangeImage::getSurfaceChange (const PointWithRange& point, const PointWithRange& neighbor1, const PointWithRange& neighbor2) const
766 //{
767  //if (!std::isfinite (point.range) || (!std::isfinite (neighbor1.range)&&neighbor1.range<0) || (!std::isfinite (neighbor2.range)&&neighbor2.range<0))
768  //return -std::numeric_limits<float>::infinity ();
769  //if (std::isinf (neighbor1.range))
770  //{
771  //if (std::isinf (neighbor2.range))
772  //return 0.0f;
773  //else
774  //return std::acos ( (Eigen::Vector3f (point.x, point.y, point.z)-getSensorPos ()).normalized ().dot ( (Eigen::Vector3f (neighbor2.x, neighbor2.y, neighbor2.z)-Eigen::Vector3f (point.x, point.y, point.z)).normalized ()));
775  //}
776  //if (std::isinf (neighbor2.range))
777  //return std::acos ( (Eigen::Vector3f (point.x, point.y, point.z)-getSensorPos ()).normalized ().dot ( (Eigen::Vector3f (neighbor1.x, neighbor1.y, neighbor1.z)-Eigen::Vector3f (point.x, point.y, point.z)).normalized ()));
778 
779  //float d1_squared = squaredEuclideanDistance (point, neighbor1),
780  //d1 = std::sqrt (d1_squared),
781  //d2_squared = squaredEuclideanDistance (point, neighbor2),
782  //d2 = std::sqrt (d2_squared),
783  //d3_squared = squaredEuclideanDistance (neighbor1, neighbor2);
784  //float cos_surface_change = (d1_squared + d2_squared - d3_squared)/ (2.0f*d1*d2),
785  //surface_change = std::acos (cos_surface_change);
786  //if (std::isnan (surface_change))
787  //surface_change = static_cast<float> (M_PI);
788  ////std::cout << PVARN (point)<<PVARN (neighbor1)<<PVARN (neighbor2)<<PVARN (cos_surface_change)<<PVARN (surface_change)<<PVARN (d1)<<PVARN (d2)<<PVARN (d1_squared)<<PVARN (d2_squared)<<PVARN (d3_squared);
789 
790  //return surface_change;
791 //}
792 
793 /////////////////////////////////////////////////////////////////////////
794 float
795 RangeImage::getMaxAngleSize (const Eigen::Affine3f& viewer_pose, const Eigen::Vector3f& center, float radius)
796 {
797  return 2.0f * asinf (radius/ (viewer_pose.translation ()-center).norm ());
798 }
799 
800 /////////////////////////////////////////////////////////////////////////
801 Eigen::Vector3f
803 {
804  return {point.x, point.y, point.z};
805 }
806 
807 /////////////////////////////////////////////////////////////////////////
808 void
809 RangeImage::get1dPointAverage (int x, int y, int delta_x, int delta_y, int no_of_points, PointWithRange& average_point) const
810 {
811  //std::cout << __PRETTY_FUNCTION__<<" called.\n";
812  //MEASURE_FUNCTION_TIME;
813  float weight_sum = 1.0f;
814  average_point = getPoint (x,y);
815  if (std::isinf (average_point.range))
816  {
817  if (average_point.range>0.0f) // The first point is max range -> return a max range point
818  return;
819  weight_sum = 0.0f;
820  average_point.x = average_point.y = average_point.z = average_point.range = 0.0f;
821  }
822 
823  int x2=x, y2=y;
824  Vector4fMap average_point_eigen = average_point.getVector4fMap ();
825  //std::cout << PVARN (no_of_points);
826  for (int step=1; step<no_of_points; ++step)
827  {
828  //std::cout << PVARC (step);
829  x2+=delta_x; y2+=delta_y;
830  if (!isValid (x2, y2))
831  continue;
832  const PointWithRange& p = getPointNoCheck (x2, y2);
833  average_point_eigen+=p.getVector4fMap (); average_point.range+=p.range;
834  weight_sum += 1.0f;
835  }
836  if (weight_sum<= 0.0f)
837  {
838  average_point = unobserved_point;
839  return;
840  }
841  float normalization_factor = 1.0f/weight_sum;
842  average_point_eigen *= normalization_factor;
843  average_point.range *= normalization_factor;
844  //std::cout << PVARN (average_point);
845 }
846 
847 /////////////////////////////////////////////////////////////////////////
848 float
849 RangeImage::getEuclideanDistanceSquared (int x1, int y1, int x2, int y2) const
850 {
851  if (!isObserved (x1,y1)||!isObserved (x2,y2))
852  return -std::numeric_limits<float>::infinity ();
853  const PointWithRange& point1 = getPoint (x1,y1),
854  & point2 = getPoint (x2,y2);
855  if (std::isinf (point1.range) && std::isinf (point2.range))
856  return 0.0f;
857  if (std::isinf (point1.range) || std::isinf (point2.range))
858  return std::numeric_limits<float>::infinity ();
859  return squaredEuclideanDistance (point1, point2);
860 }
861 
862 /////////////////////////////////////////////////////////////////////////
863 float
864 RangeImage::getAverageEuclideanDistance (int x, int y, int offset_x, int offset_y, int max_steps) const
865 {
866  float average_pixel_distance = 0.0f;
867  float weight=0.0f;
868  for (int i=0; i<max_steps; ++i)
869  {
870  int x1=x+i*offset_x, y1=y+i*offset_y;
871  int x2=x+ (i+1)*offset_x, y2=y+ (i+1)*offset_y;
872  float pixel_distance = getEuclideanDistanceSquared (x1,y1,x2,y2);
873  if (!std::isfinite (pixel_distance))
874  {
875  //std::cout << x<<","<<y<<"->"<<x2<<","<<y2<<": "<<pixel_distance<<"\n";
876  if (i==0)
877  return pixel_distance;
878  break;
879  }
880  //std::cout << x<<","<<y<<"->"<<x2<<","<<y2<<": "<<std::sqrt (pixel_distance)<<"m\n";
881  weight += 1.0f;
882  average_pixel_distance += std::sqrt (pixel_distance);
883  }
884  average_pixel_distance /= weight;
885  //std::cout << x<<","<<y<<","<<offset_x<<","<<offset_y<<" => "<<average_pixel_distance<<"\n";
886  return average_pixel_distance;
887 }
888 
889 /////////////////////////////////////////////////////////////////////////
890 float
891 RangeImage::getImpactAngleBasedOnLocalNormal (int x, int y, int radius) const
892 {
893  if (!isValid (x,y))
894  return -std::numeric_limits<float>::infinity ();
895  const PointWithRange& point = getPoint (x, y);
896  int no_of_nearest_neighbors = static_cast<int> (pow (static_cast<double> ( (radius + 1.0)), 2.0));
897  Eigen::Vector3f normal;
898  if (!getNormalForClosestNeighbors (x, y, radius, point, no_of_nearest_neighbors, normal, 1))
899  return -std::numeric_limits<float>::infinity ();
900  return deg2rad (90.0f) - std::acos (normal.dot ( (getSensorPos ()-getEigenVector3f (point)).normalized ()));
901 }
902 
903 
904 /////////////////////////////////////////////////////////////////////////
905 bool
906 RangeImage::getNormal (int x, int y, int radius, Eigen::Vector3f& normal, int step_size) const
907 {
908  VectorAverage3f vector_average;
909  for (int y2=y-radius; y2<=y+radius; y2+=step_size)
910  {
911  for (int x2=x-radius; x2<=x+radius; x2+=step_size)
912  {
913  if (!isInImage (x2, y2))
914  continue;
915  const PointWithRange& point = getPoint (x2, y2);
916  if (!std::isfinite (point.range))
917  continue;
918  vector_average.add (Eigen::Vector3f (point.x, point.y, point.z));
919  }
920  }
921  if (vector_average.getNoOfSamples () < 3)
922  return false;
923  Eigen::Vector3f eigen_values, eigen_vector2, eigen_vector3;
924  vector_average.doPCA (eigen_values, normal, eigen_vector2, eigen_vector3);
925  if (normal.dot ( (getSensorPos ()-vector_average.getMean ()).normalized ()) < 0.0f)
926  normal *= -1.0f;
927  return true;
928 }
929 
930 /////////////////////////////////////////////////////////////////////////
931 float
932 RangeImage::getNormalBasedAcutenessValue (int x, int y, int radius) const
933 {
934  float impact_angle = getImpactAngleBasedOnLocalNormal (x, y, radius);
935  if (std::isinf (impact_angle))
936  return -std::numeric_limits<float>::infinity ();
937  float ret = 1.0f - static_cast<float> ( (impact_angle / (0.5f * M_PI)));
938  //std::cout << PVARAC (impact_angle)<<PVARN (ret);
939  return ret;
940 }
941 
942 /////////////////////////////////////////////////////////////////////////
943 bool
944 RangeImage::getNormalForClosestNeighbors (int x, int y, int radius, const PointWithRange& point,
945  int no_of_nearest_neighbors, Eigen::Vector3f& normal, int step_size) const
946 {
947  return getNormalForClosestNeighbors (x, y, radius, Eigen::Vector3f (point.x, point.y, point.z), no_of_nearest_neighbors, normal, nullptr, step_size);
948 }
949 
950 /////////////////////////////////////////////////////////////////////////
951 bool
952 RangeImage::getNormalForClosestNeighbors (int x, int y, Eigen::Vector3f& normal, int radius) const
953 {
954  if (!isValid (x,y))
955  return false;
956  int no_of_nearest_neighbors = static_cast<int> (pow (static_cast<double> (radius + 1.0), 2.0));
957  return getNormalForClosestNeighbors (x, y, radius, getPoint (x,y).getVector3fMap (), no_of_nearest_neighbors, normal);
958 }
959 
960 namespace
961 { // Anonymous namespace, so that this is only accessible in this file
962  struct NeighborWithDistance
963  { // local struct to help us with sorting
964  float distance;
965  const PointWithRange* neighbor;
966  bool operator < (const NeighborWithDistance& other) const { return distance<other.distance;}
967  };
968 }
969 
970 /////////////////////////////////////////////////////////////////////////
971 bool
972 RangeImage::getSurfaceInformation (int x, int y, int radius, const Eigen::Vector3f& point, int no_of_closest_neighbors, int step_size,
973  float& max_closest_neighbor_distance_squared,
974  Eigen::Vector3f& normal, Eigen::Vector3f& mean, Eigen::Vector3f& eigen_values,
975  Eigen::Vector3f* normal_all_neighbors, Eigen::Vector3f* mean_all_neighbors,
976  Eigen::Vector3f* eigen_values_all_neighbors) const
977 {
978  max_closest_neighbor_distance_squared=0.0f;
979  normal.setZero (); mean.setZero (); eigen_values.setZero ();
980  if (normal_all_neighbors!=nullptr)
981  normal_all_neighbors->setZero ();
982  if (mean_all_neighbors!=nullptr)
983  mean_all_neighbors->setZero ();
984  if (eigen_values_all_neighbors!=nullptr)
985  eigen_values_all_neighbors->setZero ();
986 
987  const auto sqrt_blocksize = 2 * radius + 1;
988  const auto blocksize = sqrt_blocksize * sqrt_blocksize;
989 
990  PointWithRange given_point;
991  given_point.x=point[0]; given_point.y=point[1]; given_point.z=point[2];
992 
993  std::vector<NeighborWithDistance> ordered_neighbors (blocksize);
994  int neighbor_counter = 0;
995  for (int y2=y-radius; y2<=y+radius; y2+=step_size)
996  {
997  for (int x2=x-radius; x2<=x+radius; x2+=step_size)
998  {
999  if (!isValid (x2, y2))
1000  continue;
1001  NeighborWithDistance& neighbor_with_distance = ordered_neighbors[neighbor_counter];
1002  neighbor_with_distance.neighbor = &getPoint (x2, y2);
1003  neighbor_with_distance.distance = squaredEuclideanDistance (given_point, *neighbor_with_distance.neighbor);
1004  ++neighbor_counter;
1005  }
1006  }
1007  no_of_closest_neighbors = (std::min) (neighbor_counter, no_of_closest_neighbors);
1008 
1009  std::sort (ordered_neighbors.begin (), ordered_neighbors.begin () + neighbor_counter); // Normal sort seems to be the fastest method (faster than partial_sort)
1010  //std::stable_sort (ordered_neighbors, ordered_neighbors+neighbor_counter);
1011  //std::partial_sort (ordered_neighbors, ordered_neighbors+no_of_closest_neighbors, ordered_neighbors+neighbor_counter);
1012 
1013  max_closest_neighbor_distance_squared = ordered_neighbors[no_of_closest_neighbors-1].distance;
1014  //float max_distance_squared = max_closest_neighbor_distance_squared;
1015  float max_distance_squared = max_closest_neighbor_distance_squared*4.0f; // Double the allowed distance value
1016  //max_closest_neighbor_distance_squared = max_distance_squared;
1017 
1018  VectorAverage3f vector_average;
1019  //for (int neighbor_idx=0; neighbor_idx<no_of_closest_neighbors; ++neighbor_idx)
1020  int neighbor_idx;
1021  for (neighbor_idx=0; neighbor_idx<neighbor_counter; ++neighbor_idx)
1022  {
1023  if (ordered_neighbors[neighbor_idx].distance > max_distance_squared)
1024  break;
1025  //std::cout << ordered_neighbors[neighbor_idx].distance<<"\n";
1026  vector_average.add (ordered_neighbors[neighbor_idx].neighbor->getVector3fMap ());
1027  }
1028 
1029  if (vector_average.getNoOfSamples () < 3)
1030  return false;
1031  //std::cout << PVARN (vector_average.getNoOfSamples ());
1032  Eigen::Vector3f eigen_vector2, eigen_vector3;
1033  vector_average.doPCA (eigen_values, normal, eigen_vector2, eigen_vector3);
1034  Eigen::Vector3f viewing_direction = (getSensorPos ()-point).normalized ();
1035  if (normal.dot (viewing_direction) < 0.0f)
1036  normal *= -1.0f;
1037  mean = vector_average.getMean ();
1038 
1039  if (normal_all_neighbors==nullptr)
1040  return true;
1041 
1042  // Add remaining neighbors
1043  for (int neighbor_idx2=neighbor_idx; neighbor_idx2<neighbor_counter; ++neighbor_idx2)
1044  vector_average.add (ordered_neighbors[neighbor_idx2].neighbor->getVector3fMap ());
1045 
1046  vector_average.doPCA (*eigen_values_all_neighbors, *normal_all_neighbors, eigen_vector2, eigen_vector3);
1047  //std::cout << PVARN (vector_average.getNoOfSamples ())<<".\n";
1048  if (normal_all_neighbors->dot (viewing_direction) < 0.0f)
1049  *normal_all_neighbors *= -1.0f;
1050  *mean_all_neighbors = vector_average.getMean ();
1051 
1052  //std::cout << viewing_direction[0]<<","<<viewing_direction[1]<<","<<viewing_direction[2]<<"\n";
1053 
1054  return true;
1055 }
1056 
1057 /////////////////////////////////////////////////////////////////////////
1058 float
1059 RangeImage::getSquaredDistanceOfNthNeighbor (int x, int y, int radius, int n, int step_size) const
1060 {
1061  const PointWithRange& point = getPoint (x, y);
1062  if (!std::isfinite (point.range))
1063  return -std::numeric_limits<float>::infinity ();
1064 
1065  const auto sqrt_blocksize = 2 * radius + 1;
1066  const auto blocksize = sqrt_blocksize * sqrt_blocksize;
1067  std::vector<float> neighbor_distances (blocksize);
1068  int neighbor_counter = 0;
1069  for (int y2=y-radius; y2<=y+radius; y2+=step_size)
1070  {
1071  for (int x2=x-radius; x2<=x+radius; x2+=step_size)
1072  {
1073  if (!isValid (x2, y2) || (x2==x&&y2==y))
1074  continue;
1075  const PointWithRange& neighbor = getPointNoCheck (x2,y2);
1076  float& neighbor_distance = neighbor_distances[neighbor_counter++];
1077  neighbor_distance = squaredEuclideanDistance (point, neighbor);
1078  }
1079  }
1080  std::sort (neighbor_distances.begin (), neighbor_distances.begin () + neighbor_counter); // Normal sort seems to be
1081  // the fastest method (faster than partial_sort)
1082  n = (std::min) (neighbor_counter, n);
1083  return neighbor_distances[n-1];
1084 }
1085 
1086 
1087 /////////////////////////////////////////////////////////////////////////
1088 bool
1089 RangeImage::getNormalForClosestNeighbors (int x, int y, int radius, const Eigen::Vector3f& point, int no_of_nearest_neighbors,
1090  Eigen::Vector3f& normal, Eigen::Vector3f* point_on_plane, int step_size) const
1091 {
1092  Eigen::Vector3f mean, eigen_values;
1093  float used_squared_max_distance;
1094  bool ret = getSurfaceInformation (x, y, radius, point, no_of_nearest_neighbors, step_size, used_squared_max_distance,
1095  normal, mean, eigen_values);
1096 
1097  if (ret)
1098  {
1099  if (point_on_plane != nullptr)
1100  *point_on_plane = (normal.dot (mean) - normal.dot (point))*normal + point;
1101  }
1102  return ret;
1103 }
1104 
1105 
1106 /////////////////////////////////////////////////////////////////////////
1107 float
1108 RangeImage::getCurvature (int x, int y, int radius, int step_size) const
1109 {
1110  VectorAverage3f vector_average;
1111  for (int y2=y-radius; y2<=y+radius; y2+=step_size)
1112  {
1113  for (int x2=x-radius; x2<=x+radius; x2+=step_size)
1114  {
1115  if (!isInImage (x2, y2))
1116  continue;
1117  const PointWithRange& point = getPoint (x2, y2);
1118  if (!std::isfinite (point.range))
1119  continue;
1120  vector_average.add (Eigen::Vector3f (point.x, point.y, point.z));
1121  }
1122  }
1123  if (vector_average.getNoOfSamples () < 3)
1124  return false;
1125  Eigen::Vector3f eigen_values;
1126  vector_average.doPCA (eigen_values);
1127  return eigen_values[0]/eigen_values.sum ();
1128 }
1129 
1130 
1131 /////////////////////////////////////////////////////////////////////////
1132 template <typename PointCloudTypeWithViewpoints> Eigen::Vector3f
1133 RangeImage::getAverageViewPoint (const PointCloudTypeWithViewpoints& point_cloud)
1134 {
1135  Eigen::Vector3f average_viewpoint (0,0,0);
1136  int point_counter = 0;
1137  for (const auto& point: point_cloud.points)
1138  {
1139  if (!std::isfinite (point.vp_x) || !std::isfinite (point.vp_y) || !std::isfinite (point.vp_z))
1140  continue;
1141  average_viewpoint[0] += point.vp_x;
1142  average_viewpoint[1] += point.vp_y;
1143  average_viewpoint[2] += point.vp_z;
1144  ++point_counter;
1145  }
1146  average_viewpoint /= point_counter;
1147 
1148  return average_viewpoint;
1149 }
1150 
1151 /////////////////////////////////////////////////////////////////////////
1152 bool
1153 RangeImage::getViewingDirection (int x, int y, Eigen::Vector3f& viewing_direction) const
1154 {
1155  if (!isValid (x, y))
1156  return false;
1157  viewing_direction = (getPoint (x,y).getVector3fMap ()-getSensorPos ()).normalized ();
1158  return true;
1159 }
1160 
1161 /////////////////////////////////////////////////////////////////////////
1162 void
1163 RangeImage::getViewingDirection (const Eigen::Vector3f& point, Eigen::Vector3f& viewing_direction) const
1164 {
1165  viewing_direction = (point-getSensorPos ()).normalized ();
1166 }
1167 
1168 /////////////////////////////////////////////////////////////////////////
1169 Eigen::Affine3f
1170 RangeImage::getTransformationToViewerCoordinateFrame (const Eigen::Vector3f& point) const
1171 {
1172  Eigen::Affine3f transformation;
1173  getTransformationToViewerCoordinateFrame (point, transformation);
1174  return transformation;
1175 }
1176 
1177 /////////////////////////////////////////////////////////////////////////
1178 void
1179 RangeImage::getTransformationToViewerCoordinateFrame (const Eigen::Vector3f& point, Eigen::Affine3f& transformation) const
1180 {
1181  Eigen::Vector3f viewing_direction = (point-getSensorPos ()).normalized ();
1182  getTransformationFromTwoUnitVectorsAndOrigin (Eigen::Vector3f (0.0f, -1.0f, 0.0f), viewing_direction, point, transformation);
1183 }
1184 
1185 /////////////////////////////////////////////////////////////////////////
1186 void
1187 RangeImage::getRotationToViewerCoordinateFrame (const Eigen::Vector3f& point, Eigen::Affine3f& transformation) const
1188 {
1189  Eigen::Vector3f viewing_direction = (point-getSensorPos ()).normalized ();
1190  getTransformationFromTwoUnitVectors (Eigen::Vector3f (0.0f, -1.0f, 0.0f), viewing_direction, transformation);
1191 }
1192 
1193 /////////////////////////////////////////////////////////////////////////
1194 inline void
1195 RangeImage::setAngularResolution (float angular_resolution)
1196 {
1197  angular_resolution_x_ = angular_resolution_y_ = angular_resolution;
1199 }
1200 
1201 /////////////////////////////////////////////////////////////////////////
1202 inline void
1203 RangeImage::setAngularResolution (float angular_resolution_x, float angular_resolution_y)
1204 {
1205  angular_resolution_x_ = angular_resolution_x;
1207  angular_resolution_y_ = angular_resolution_y;
1209 }
1210 
1211 /////////////////////////////////////////////////////////////////////////
1212 inline void
1213 RangeImage::setTransformationToRangeImageSystem (const Eigen::Affine3f& to_range_image_system)
1214 {
1215  to_range_image_system_ = to_range_image_system;
1217 }
1218 
1219 /////////////////////////////////////////////////////////////////////////
1220 inline void
1221 RangeImage::getAngularResolution (float& angular_resolution_x, float& angular_resolution_y) const
1222 {
1223  angular_resolution_x = angular_resolution_x_;
1224  angular_resolution_y = angular_resolution_y_;
1225 }
1226 
1227 /////////////////////////////////////////////////////////////////////////
1228 template <typename PointCloudType> void
1229 RangeImage::integrateFarRanges (const PointCloudType& far_ranges)
1230 {
1231  float x_real, y_real, range_of_current_point;
1232  for (const auto& point: far_ranges.points)
1233  {
1234  //if (!isFinite (point)) // Check for NAN etc
1235  //continue;
1236  Vector3fMapConst current_point = point.getVector3fMap ();
1237 
1238  this->getImagePoint (current_point, x_real, y_real, range_of_current_point);
1239 
1240  int floor_x = static_cast<int> (pcl_lrint (std::floor (x_real))),
1241  floor_y = static_cast<int> (pcl_lrint (std::floor (y_real))),
1242  ceil_x = static_cast<int> (pcl_lrint (std::ceil (x_real))),
1243  ceil_y = static_cast<int> (pcl_lrint (std::ceil (y_real)));
1244 
1245  int neighbor_x[4], neighbor_y[4];
1246  neighbor_x[0]=floor_x; neighbor_y[0]=floor_y;
1247  neighbor_x[1]=floor_x; neighbor_y[1]=ceil_y;
1248  neighbor_x[2]=ceil_x; neighbor_y[2]=floor_y;
1249  neighbor_x[3]=ceil_x; neighbor_y[3]=ceil_y;
1250 
1251  for (int i=0; i<4; ++i)
1252  {
1253  int x=neighbor_x[i], y=neighbor_y[i];
1254  if (!isInImage (x, y))
1255  continue;
1256  PointWithRange& image_point = getPoint (x, y);
1257  if (!std::isfinite (image_point.range))
1258  image_point.range = std::numeric_limits<float>::infinity ();
1259  }
1260  }
1261 }
1262 
1263 } // namespace pcl
bool is_dense
True if no points are invalid (e.g., have NaN or Inf values in any of their floating point fields).
Definition: point_cloud.h:403
std::uint32_t width
The point cloud width (if organized as an image-structure).
Definition: point_cloud.h:398
std::uint32_t height
The point cloud height (if organized as an image-structure).
Definition: point_cloud.h:400
std::vector< PointT, Eigen::aligned_allocator< PointT > > VectorType
Definition: point_cloud.h:411
std::vector< PointWithRange, Eigen::aligned_allocator< PointWithRange > > points
The point data.
Definition: point_cloud.h:395
PCL_EXPORTS void recalculate3DPointPositions()
Recalculate all 3D point positions according to their pixel position and range.
int image_offset_y_
Position of the top left corner of the range image compared to an image of full size (360x180 degrees...
Definition: range_image.h:776
static float atan2LookUp(float y, float x)
Query the std::atan2 lookup table.
Definition: range_image.hpp:64
void calculate3DPoint(float image_x, float image_y, float range, PointWithRange &point) const
Calculate the 3D point according to the given image point and range.
float getImpactAngleBasedOnLocalNormal(int x, int y, int radius) const
Extract a local normal (with a heuristic not to include background points) and calculate the impact a...
PCL_EXPORTS void cropImage(int border_size=0, int top=-1, int right=-1, int bottom=-1, int left=-1)
Cut the range image to the minimal size so that it still contains all actual range readings.
float getAcutenessValue(const PointWithRange &point1, const PointWithRange &point2) const
Calculate a score [0,1] that tells how acute the impact angle is (1.0f - getImpactAngle/90deg) will r...
bool isValid(int x, int y) const
Check if a point is inside of the image and has a finite range.
void getAnglesFromImagePoint(float image_x, float image_y, float &angle_x, float &angle_y) const
Get the angles corresponding to the given image point.
void setAngularResolution(float angular_resolution)
Set the angular resolution of the range image.
static float cosLookUp(float value)
Query the cos lookup table.
Definition: range_image.hpp:90
static Eigen::Vector3f getEigenVector3f(const PointWithRange &point)
Get Eigen::Vector3f from PointWithRange.
Eigen::Affine3f to_world_system_
Inverse of to_range_image_system_.
Definition: range_image.h:769
void get1dPointAverage(int x, int y, int delta_x, int delta_y, int no_of_points, PointWithRange &average_point) const
Calculates the average 3D position of the no_of_points points described by the start point x,...
float checkPoint(const Eigen::Vector3f &point, PointWithRange &point_in_image) const
point_in_image will be the point in the image at the position the given point would be.
static Eigen::Vector3f getAverageViewPoint(const PointCloudTypeWithViewpoints &point_cloud)
Get the average viewpoint of a point cloud where each point carries viewpoint information as vp_x,...
float getAverageEuclideanDistance(int x, int y, int offset_x, int offset_y, int max_steps) const
Doing the above for some steps in the given direction and averaging.
PointWithRange unobserved_point
This point is used to be able to return a reference to a non-existing point.
Definition: range_image.h:778
const PointWithRange & getPoint(int image_x, int image_y) const
Return the 3D point with range at the given image position.
void doZBuffer(const PointCloudType &point_cloud, float noise_level, float min_range, int &top, int &right, int &bottom, int &left)
Integrate the given point cloud into the current range image using a z-buffer.
const PointWithRange & getPointNoCheck(int image_x, int image_y) const
Return the 3D point with range at the given image position.
float getNormalBasedAcutenessValue(int x, int y, int radius) const
Calculate a score [0,1] that tells how acute the impact angle is (1.0f - getImpactAngle/90deg) This u...
Eigen::Affine3f getTransformationToViewerCoordinateFrame(const Eigen::Vector3f &point) const
Get the local coordinate frame with 0,0,0 in point, upright and Z as the viewing direction.
float getImpactAngle(const PointWithRange &point1, const PointWithRange &point2) const
Calculate the impact angle based on the sensor position and the two given points - will return -INFIN...
void integrateFarRanges(const PointCloudType &far_ranges)
Integrates the given far range measurements into the range image.
static float asinLookUp(float value)
Query the asin lookup table.
Definition: range_image.hpp:54
static std::vector< float > atan_lookup_table
Definition: range_image.h:787
float getAngularResolution() const
Getter for the angular resolution of the range image in x direction in radians per pixel.
Definition: range_image.h:352
bool isObserved(int x, int y) const
Check if a point is inside of the image and has either a finite range or a max reading (range=INFINIT...
bool isMaxRange(int x, int y) const
Check if a point is a max range (range=INFINITY) - please check isInImage or isObserved first!
virtual void getImagePoint(const Eigen::Vector3f &point, float &image_x, float &image_y, float &range) const
Get imagePoint from 3D point in world coordinates.
bool isInImage(int x, int y) const
Check if a point is inside of the image.
void createFromPointCloud(const PointCloudType &point_cloud, float angular_resolution=pcl::deg2rad(0.5f), float max_angle_width=pcl::deg2rad(360.0f), float max_angle_height=pcl::deg2rad(180.0f), const Eigen::Affine3f &sensor_pose=Eigen::Affine3f::Identity(), CoordinateFrame coordinate_frame=CAMERA_FRAME, float noise_level=0.0f, float min_range=0.0f, int border_size=0)
Create the depth image from a point cloud.
Definition: range_image.hpp:98
float angular_resolution_y_reciprocal_
1.0/angular_resolution_y_ - provided for better performance of multiplication compared to division
Definition: range_image.h:774
void real2DToInt2D(float x, float y, int &xInt, int &yInt) const
Transforms an image point in float values to an image point in int values.
void createFromPointCloudWithViewpoints(const PointCloudTypeWithViewpoints &point_cloud, float angular_resolution, float max_angle_width, float max_angle_height, CoordinateFrame coordinate_frame=CAMERA_FRAME, float noise_level=0.0f, float min_range=0.0f, int border_size=0)
Create the depth image from a point cloud, using the average viewpoint of the points (vp_x,...
float getEuclideanDistanceSquared(int x1, int y1, int x2, int y2) const
Get the squared euclidean distance between the two image points.
static const int lookup_table_size
Definition: range_image.h:785
const Eigen::Vector3f getSensorPos() const
Get the sensor position.
float angular_resolution_y_
Angular resolution of the range image in y direction in radians per pixel.
Definition: range_image.h:771
bool getSurfaceInformation(int x, int y, int radius, const Eigen::Vector3f &point, int no_of_closest_neighbors, int step_size, float &max_closest_neighbor_distance_squared, Eigen::Vector3f &normal, Eigen::Vector3f &mean, Eigen::Vector3f &eigen_values, Eigen::Vector3f *normal_all_neighbors=nullptr, Eigen::Vector3f *mean_all_neighbors=nullptr, Eigen::Vector3f *eigen_values_all_neighbors=nullptr) const
Same as above but extracts some more data and can also return the extracted information for all neigh...
static std::vector< float > cos_lookup_table
Definition: range_image.h:788
static std::vector< float > asin_lookup_table
Definition: range_image.h:786
void setTransformationToRangeImageSystem(const Eigen::Affine3f &to_range_image_system)
Setter for the transformation from the range image system (the sensor coordinate frame) into the worl...
void getRotationToViewerCoordinateFrame(const Eigen::Vector3f &point, Eigen::Affine3f &transformation) const
Same as above, but only returning the rotation.
float angular_resolution_x_
Angular resolution of the range image in x direction in radians per pixel.
Definition: range_image.h:770
static float getMaxAngleSize(const Eigen::Affine3f &viewer_pose, const Eigen::Vector3f &center, float radius)
Get the size of a certain area when seen from the given pose.
float getCurvature(int x, int y, int radius, int step_size) const
Calculates the curvature in a point using pca.
bool getNormalForClosestNeighbors(int x, int y, int radius, const PointWithRange &point, int no_of_nearest_neighbors, Eigen::Vector3f &normal, int step_size=1) const
Same as above, but only the no_of_nearest_neighbors points closest to the given point are considered.
bool getViewingDirection(int x, int y, Eigen::Vector3f &viewing_direction) const
Get the viewing direction for the given point.
Eigen::Affine3f to_range_image_system_
Inverse of to_world_system_.
Definition: range_image.h:768
float angular_resolution_x_reciprocal_
1.0/angular_resolution_x_ - provided for better performance of multiplication compared to division
Definition: range_image.h:772
void getImagePointFromAngles(float angle_x, float angle_y, float &image_x, float &image_y) const
Get the image point corresponding to the given angles.
float getSquaredDistanceOfNthNeighbor(int x, int y, int radius, int n, int step_size) const
float getRangeDifference(const Eigen::Vector3f &point) const
Returns the difference in range between the given point and the range of the point in the image at th...
bool getNormal(int x, int y, int radius, Eigen::Vector3f &normal, int step_size=1) const
Calculate the normal of an image point using the neighbors with a maximum pixel distance of radius.
static PCL_EXPORTS void getCoordinateFrameTransformation(RangeImage::CoordinateFrame coordinate_frame, Eigen::Affine3f &transformation)
Get the transformation that transforms the given coordinate frame into CAMERA_FRAME.
void createFromPointCloudWithKnownSize(const PointCloudType &point_cloud, float angular_resolution, const Eigen::Vector3f &point_cloud_center, float point_cloud_radius, const Eigen::Affine3f &sensor_pose=Eigen::Affine3f::Identity(), CoordinateFrame coordinate_frame=CAMERA_FRAME, float noise_level=0.0f, float min_range=0.0f, int border_size=0)
Create the depth image from a point cloud, getting a hint about the size of the scene for faster calc...
void getSurfaceAngleChange(int x, int y, int radius, float &angle_change_x, float &angle_change_y) const
Calculates, how much the surface changes at a point.
Calculates the weighted average and the covariance matrix.
void add(const VectorType &sample, real weight=1.0)
Add a new sample.
void doPCA(VectorType &eigen_values, VectorType &eigen_vector1, VectorType &eigen_vector2, VectorType &eigen_vector3) const
Do Principal component analysis.
const VectorType & getMean() const
Get the mean of the added vectors.
unsigned int getNoOfSamples()
Get the number of added vectors.
Define standard C methods to do distance calculations.
float deg2rad(float alpha)
Convert an angle from degrees to radians.
Definition: angles.hpp:67
void getTransformationFromTwoUnitVectorsAndOrigin(const Eigen::Vector3f &y_direction, const Eigen::Vector3f &z_axis, const Eigen::Vector3f &origin, Eigen::Affine3f &transformation)
Get the transformation that will translate origin to (0,0,0) and rotate z_axis into (0,...
Definition: eigen.hpp:583
void getTransformationFromTwoUnitVectors(const Eigen::Vector3f &y_direction, const Eigen::Vector3f &z_axis, Eigen::Affine3f &transformation)
Get the unique 3D rotation that will rotate z_axis into (0,0,1) and y_direction into a vector with x=...
Definition: eigen.hpp:564
float distance(const PointT &p1, const PointT &p2)
Definition: geometry.h:60
Eigen::Map< Eigen::Vector4f, Eigen::Aligned > Vector4fMap
float squaredEuclideanDistance(const PointType1 &p1, const PointType2 &p2)
Calculate the squared euclidean distance between the two given points.
Definition: distances.h:182
bool isFinite(const PointT &pt)
Tests if the 3D components of a point are all finite param[in] pt point to be tested return true if f...
Definition: point_tests.h:55
const Eigen::Map< const Eigen::Vector3f > Vector3fMapConst
Defines all the PCL and non-PCL macros used.
#define pcl_lrint(x)
Definition: pcl_macros.h:253
#define pcl_lrintf(x)
Definition: pcl_macros.h:254
#define M_PI
Definition: pcl_macros.h:201
A point structure representing Euclidean xyz coordinates, padded with an extra range float.