Point Cloud Library (PCL)  1.14.1-dev
principal_curvatures.h
1 /*
2  * Software License Agreement (BSD License)
3  *
4  * Point Cloud Library (PCL) - www.pointclouds.org
5  * Copyright (c) 2010-2011, Willow Garage, Inc.
6  * Copyright (c) 2012-, Open Perception, Inc.
7  *
8  * All rights reserved.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  *
14  * * Redistributions of source code must retain the above copyright
15  * notice, this list of conditions and the following disclaimer.
16  * * Redistributions in binary form must reproduce the above
17  * copyright notice, this list of conditions and the following
18  * disclaimer in the documentation and/or other materials provided
19  * with the distribution.
20  * * Neither the name of the copyright holder(s) nor the names of its
21  * contributors may be used to endorse or promote products derived
22  * from this software without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
25  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
26  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
27  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
28  * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
29  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
30  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
31  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
32  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
34  * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35  * POSSIBILITY OF SUCH DAMAGE.
36  *
37  * $Id$
38  *
39  */
40 
41 #pragma once
42 
43 #include <pcl/features/feature.h>
44 
45 namespace pcl
46 {
47  /** \brief PrincipalCurvaturesEstimation estimates the directions (eigenvectors) and magnitudes (eigenvalues) of
48  * principal surface curvatures for a given point cloud dataset containing points and normals. The output contains
49  * the principal curvature (eigenvector of the max eigenvalue), along with both the max (pc1) and min (pc2)
50  * eigenvalues. Parallel execution is supported through OpenMP.
51  *
52  * The recommended PointOutT is pcl::PrincipalCurvatures.
53  *
54  * \author Radu B. Rusu, Jared Glover, Alex Navarro
55  * \ingroup features
56  */
57  template <typename PointInT, typename PointNT, typename PointOutT = pcl::PrincipalCurvatures>
58  class PrincipalCurvaturesEstimation : public FeatureFromNormals<PointInT, PointNT, PointOutT>
59  {
60  public:
61  using Ptr = shared_ptr<PrincipalCurvaturesEstimation<PointInT, PointNT, PointOutT> >;
62  using ConstPtr = shared_ptr<const PrincipalCurvaturesEstimation<PointInT, PointNT, PointOutT> >;
71 
74 
75  /** \brief Initialize the scheduler and set the number of threads to use.
76  * \param nr_threads the number of hardware threads to use (0 sets the value to automatic)
77  * \param chunk_size PCL will use dynamic scheduling with this chunk size. Setting it too
78  * low will lead to more parallelization overhead. Setting it too high
79  * will lead to a worse balancing between the threads.
80  */
81  PrincipalCurvaturesEstimation (unsigned int nr_threads = 1, int chunk_size = 256) :
82  chunk_size_(chunk_size)
83  {
84  feature_name_ = "PrincipalCurvaturesEstimation";
85 
86  setNumberOfThreads(nr_threads);
87  };
88 
89  /** \brief Perform Principal Components Analysis (PCA) on the point normals of a surface patch in the tangent
90  * plane of the given point normal, and return the principal curvature (eigenvector of the max eigenvalue),
91  * along with both the max (pc1) and min (pc2) eigenvalues
92  * \param[in] normals the point cloud normals
93  * \param[in] p_idx the query point at which the least-squares plane was estimated
94  * \param[in] indices the point cloud indices that need to be used
95  * \param[out] pcx the principal curvature X direction
96  * \param[out] pcy the principal curvature Y direction
97  * \param[out] pcz the principal curvature Z direction
98  * \param[out] pc1 the max eigenvalue of curvature
99  * \param[out] pc2 the min eigenvalue of curvature
100  */
101  void
103  int p_idx, const pcl::Indices &indices,
104  float &pcx, float &pcy, float &pcz, float &pc1, float &pc2);
105 
106  /** \brief Initialize the scheduler and set the number of threads to use. The default behavior is
107  * single threaded exectution
108  * \param nr_threads the number of hardware threads to use (0 sets the value to automatic)
109  */
110  void
111  setNumberOfThreads (unsigned int nr_threads);
112 
113  protected:
114  /** \brief The number of threads the scheduler should use. */
115  unsigned int threads_;
116 
117  /** \brief Chunk size for (dynamic) scheduling. */
119 
120  /** \brief Estimate the principal curvature (eigenvector of the max eigenvalue), along with both the max (pc1)
121  * and min (pc2) eigenvalues for all points given in <setInputCloud (), setIndices ()> using the surface in
122  * setSearchSurface () and the spatial locator in setSearchMethod ()
123  * \param[out] output the resultant point cloud model dataset that contains the principal curvature estimates
124  */
125  void
126  computeFeature (PointCloudOut &output) override;
127  };
128 }
129 
130 #ifdef PCL_NO_PRECOMPILE
131 #include <pcl/features/impl/principal_curvatures.hpp>
132 #endif
Feature represents the base feature class.
Definition: feature.h:107
shared_ptr< Feature< PointInT, PointOutT > > Ptr
Definition: feature.h:114
std::string feature_name_
The feature name.
Definition: feature.h:220
shared_ptr< const Feature< PointInT, PointOutT > > ConstPtr
Definition: feature.h:115
PrincipalCurvaturesEstimation estimates the directions (eigenvectors) and magnitudes (eigenvalues) of...
int chunk_size_
Chunk size for (dynamic) scheduling.
void setNumberOfThreads(unsigned int nr_threads)
Initialize the scheduler and set the number of threads to use.
void computePointPrincipalCurvatures(const pcl::PointCloud< PointNT > &normals, int p_idx, const pcl::Indices &indices, float &pcx, float &pcy, float &pcz, float &pc1, float &pc2)
Perform Principal Components Analysis (PCA) on the point normals of a surface patch in the tangent pl...
PrincipalCurvaturesEstimation(unsigned int nr_threads=1, int chunk_size=256)
Initialize the scheduler and set the number of threads to use.
void computeFeature(PointCloudOut &output) override
Estimate the principal curvature (eigenvector of the max eigenvalue), along with both the max (pc1) a...
unsigned int threads_
The number of threads the scheduler should use.
IndicesAllocator<> Indices
Type used for indices in PCL.
Definition: types.h:133