Point Cloud Library (PCL)  1.14.1-dev
integral_image_normal.h
1 /*
2  * Software License Agreement (BSD License)
3  *
4  * Point Cloud Library (PCL) - www.pointclouds.org
5  * Copyright (c) 2010-2011, Willow Garage, Inc.
6  * Copyright (c) 2012-, Open Perception, Inc.
7  *
8  * All rights reserved.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  *
14  * * Redistributions of source code must retain the above copyright
15  * notice, this list of conditions and the following disclaimer.
16  * * Redistributions in binary form must reproduce the above
17  * copyright notice, this list of conditions and the following
18  * disclaimer in the documentation and/or other materials provided
19  * with the distribution.
20  * * Neither the name of the copyright holder(s) nor the names of its
21  * contributors may be used to endorse or promote products derived
22  * from this software without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
25  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
26  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
27  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
28  * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
29  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
30  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
31  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
32  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
34  * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35  * POSSIBILITY OF SUCH DAMAGE.
36  *
37  */
38 
39 #pragma once
40 
41 #include <pcl/memory.h>
42 #include <pcl/pcl_macros.h>
43 #include <pcl/point_cloud.h>
44 #include <pcl/features/feature.h>
45 #include <pcl/features/integral_image2D.h>
46 
47 namespace pcl
48 {
49  /** \brief Surface normal estimation on organized data using integral images.
50  *
51  * For detailed information about this method see:
52  *
53  * S. Holzer and R. B. Rusu and M. Dixon and S. Gedikli and N. Navab,
54  * Adaptive Neighborhood Selection for Real-Time Surface Normal Estimation
55  * from Organized Point Cloud Data Using Integral Images, IROS 2012.
56  *
57  * D. Holz, S. Holzer, R. B. Rusu, and S. Behnke (2011, July).
58  * Real-Time Plane Segmentation using RGB-D Cameras. In Proceedings of
59  * the 15th RoboCup International Symposium, Istanbul, Turkey.
60  * http://www.ais.uni-bonn.de/~holz/papers/holz_2011_robocup.pdf
61  *
62  * \author Stefan Holzer
63  */
64  template <typename PointInT, typename PointOutT>
65  class IntegralImageNormalEstimation: public Feature<PointInT, PointOutT>
66  {
72 
73  public:
74  using Ptr = shared_ptr<IntegralImageNormalEstimation<PointInT, PointOutT> >;
75  using ConstPtr = shared_ptr<const IntegralImageNormalEstimation<PointInT, PointOutT> >;
76 
77  /** \brief Different types of border handling. */
79  {
82  };
83 
84  /** \brief Different normal estimation methods.
85  * <ul>
86  * <li><b>COVARIANCE_MATRIX</b> - creates 9 integral images to compute the normal for a specific point
87  * from the covariance matrix of its local neighborhood.</li>
88  * <li><b>AVERAGE_3D_GRADIENT</b> - creates 6 integral images to compute smoothed versions of
89  * horizontal and vertical 3D gradients and computes the normals using the cross-product between these
90  * two gradients.
91  * <li><b>AVERAGE_DEPTH_CHANGE</b> - creates only a single integral image and computes the normals
92  * from the average depth changes.
93  * </ul>
94  */
96  {
101  };
102 
105 
106  /** \brief Constructor */
108  : normal_estimation_method_(AVERAGE_3D_GRADIENT)
109  , border_policy_ (BORDER_POLICY_IGNORE)
110  , integral_image_DX_ (false)
111  , integral_image_DY_ (false)
112  , integral_image_depth_ (false)
113  , integral_image_XYZ_ (true)
114  , max_depth_change_factor_ (20.0f*0.001f)
115  {
116  feature_name_ = "IntegralImagesNormalEstimation";
117  tree_.reset ();
118  k_ = 1;
119  }
120 
121  /** \brief Destructor **/
122  ~IntegralImageNormalEstimation () override;
123 
124  /** \brief Set the regions size which is considered for normal estimation.
125  * \param[in] width the width of the search rectangle
126  * \param[in] height the height of the search rectangle
127  */
128  void
129  setRectSize (const int width, const int height);
130 
131  /** \brief Sets the policy for handling borders.
132  * \param[in] border_policy the border policy.
133  */
134  void
135  setBorderPolicy (const BorderPolicy border_policy)
136  {
137  border_policy_ = border_policy;
138  }
139 
140  /** \brief Computes the normal at the specified position.
141  * \param[in] pos_x x position (pixel)
142  * \param[in] pos_y y position (pixel)
143  * \param[in] point_index the position index of the point
144  * \param[out] normal the output estimated normal
145  */
146  void
147  computePointNormal (const int pos_x, const int pos_y, const unsigned point_index, PointOutT &normal);
148 
149  /** \brief Computes the normal at the specified position with mirroring for border handling.
150  * \param[in] pos_x x position (pixel)
151  * \param[in] pos_y y position (pixel)
152  * \param[in] point_index the position index of the point
153  * \param[out] normal the output estimated normal
154  */
155  void
156  computePointNormalMirror (const int pos_x, const int pos_y, const unsigned point_index, PointOutT &normal);
157 
158  /** \brief The depth change threshold for computing object borders
159  * \param[in] max_depth_change_factor the depth change threshold for computing object borders based on
160  * depth changes
161  */
162  void
163  setMaxDepthChangeFactor (float max_depth_change_factor)
164  {
165  max_depth_change_factor_ = max_depth_change_factor;
166  }
167 
168  /** \brief Set the normal smoothing size
169  * \param[in] normal_smoothing_size factor which influences the size of the area used to smooth normals
170  * (depth dependent if useDepthDependentSmoothing is true)
171  */
172  void
173  setNormalSmoothingSize (float normal_smoothing_size)
174  {
175  if (normal_smoothing_size < 2.0f)
176  {
177  PCL_ERROR ("[pcl::%s::setNormalSmoothingSize] Invalid normal smoothing size given! (%g). Must be at least 2. Defaulting to %g.\n",
178  feature_name_.c_str (), normal_smoothing_size, normal_smoothing_size_);
179  return;
180  }
181  normal_smoothing_size_ = normal_smoothing_size;
182  }
183 
184  /** \brief Set the normal estimation method. The current implemented algorithms are:
185  * <ul>
186  * <li><b>COVARIANCE_MATRIX</b> - creates 9 integral images to compute the normal for a specific point
187  * from the covariance matrix of its local neighborhood.</li>
188  * <li><b>AVERAGE_3D_GRADIENT</b> - creates 6 integral images to compute smoothed versions of
189  * horizontal and vertical 3D gradients and computes the normals using the cross-product between these
190  * two gradients.
191  * <li><b>AVERAGE_DEPTH_CHANGE</b> - creates only a single integral image and computes the normals
192  * from the average depth changes.
193  * </ul>
194  * \param[in] normal_estimation_method the method used for normal estimation
195  */
196  void
198  {
199  normal_estimation_method_ = normal_estimation_method;
200  }
201 
202  /** \brief Set whether to use depth depending smoothing or not
203  * \param[in] use_depth_dependent_smoothing decides whether the smoothing is depth dependent
204  */
205  void
206  setDepthDependentSmoothing (bool use_depth_dependent_smoothing)
207  {
208  use_depth_dependent_smoothing_ = use_depth_dependent_smoothing;
209  }
210 
211  /** \brief Provide a pointer to the input dataset (overwrites the PCLBase::setInputCloud method)
212  * \param[in] cloud the const boost shared pointer to a PointCloud message
213  */
214  inline void
215  setInputCloud (const typename PointCloudIn::ConstPtr &cloud) override
216  {
217  input_ = cloud;
218  if (!cloud->isOrganized ())
219  {
220  PCL_ERROR ("[pcl::IntegralImageNormalEstimation::setInputCloud] Input dataset is not organized (height = 1).\n");
221  return;
222  }
223 
224  init_covariance_matrix_ = init_average_3d_gradient_ = init_depth_change_ = false;
225 
226  if (use_sensor_origin_)
227  {
228  vpx_ = input_->sensor_origin_.coeff (0);
229  vpy_ = input_->sensor_origin_.coeff (1);
230  vpz_ = input_->sensor_origin_.coeff (2);
231  }
232 
233  // Initialize the correct data structure based on the normal estimation method chosen
234  initData ();
235  }
236 
237  /** \brief Returns a pointer to the distance map which was computed internally
238  */
239  inline float*
241  {
242  return (distance_map_);
243  }
244 
245  /** \brief Set the viewpoint.
246  * \param vpx the X coordinate of the viewpoint
247  * \param vpy the Y coordinate of the viewpoint
248  * \param vpz the Z coordinate of the viewpoint
249  */
250  inline void
251  setViewPoint (float vpx, float vpy, float vpz)
252  {
253  vpx_ = vpx;
254  vpy_ = vpy;
255  vpz_ = vpz;
256  use_sensor_origin_ = false;
257  }
258 
259  /** \brief Get the viewpoint.
260  * \param [out] vpx x-coordinate of the view point
261  * \param [out] vpy y-coordinate of the view point
262  * \param [out] vpz z-coordinate of the view point
263  * \note this method returns the currently used viewpoint for normal flipping.
264  * If the viewpoint is set manually using the setViewPoint method, this method will return the set view point coordinates.
265  * If an input cloud is set, it will return the sensor origin otherwise it will return the origin (0, 0, 0)
266  */
267  inline void
268  getViewPoint (float &vpx, float &vpy, float &vpz)
269  {
270  vpx = vpx_;
271  vpy = vpy_;
272  vpz = vpz_;
273  }
274 
275  /** \brief sets whether the sensor origin or a user given viewpoint should be used. After this method, the
276  * normal estimation method uses the sensor origin of the input cloud.
277  * to use a user defined view point, use the method setViewPoint
278  */
279  inline void
281  {
282  use_sensor_origin_ = true;
283  if (input_)
284  {
285  vpx_ = input_->sensor_origin_.coeff (0);
286  vpy_ = input_->sensor_origin_.coeff (1);
287  vpz_ = input_->sensor_origin_.coeff (2);
288  }
289  else
290  {
291  vpx_ = 0;
292  vpy_ = 0;
293  vpz_ = 0;
294  }
295  }
296 
297  protected:
298 
299  /** \brief Computes the normal for the complete cloud or only \a indices_ if provided.
300  * \param[out] output the resultant normals
301  */
302  void
303  computeFeature (PointCloudOut &output) override;
304 
305  /** \brief Computes the normal for the complete cloud.
306  * \param[in] distance_map distance map
307  * \param[in] bad_point constant given to invalid normal components
308  * \param[out] output the resultant normals
309  */
310  void
311  computeFeatureFull (const float* distance_map, const float& bad_point, PointCloudOut& output);
312 
313  /** \brief Computes the normal for part of the cloud specified by \a indices_
314  * \param[in] distance_map distance map
315  * \param[in] bad_point constant given to invalid normal components
316  * \param[out] output the resultant normals
317  */
318  void
319  computeFeaturePart (const float* distance_map, const float& bad_point, PointCloudOut& output);
320 
321  /** \brief Initialize the data structures, based on the normal estimation method chosen. */
322  void
323  initData ();
324 
325  private:
326 
327  /** \brief Flip (in place) the estimated normal of a point towards a given viewpoint
328  * \param point a given point
329  * \param vp_x the X coordinate of the viewpoint
330  * \param vp_y the X coordinate of the viewpoint
331  * \param vp_z the X coordinate of the viewpoint
332  * \param nx the resultant X component of the plane normal
333  * \param ny the resultant Y component of the plane normal
334  * \param nz the resultant Z component of the plane normal
335  * \ingroup features
336  */
337  inline void
338  flipNormalTowardsViewpoint (const PointInT &point,
339  float vp_x, float vp_y, float vp_z,
340  float &nx, float &ny, float &nz)
341  {
342  // See if we need to flip any plane normals
343  vp_x -= point.x;
344  vp_y -= point.y;
345  vp_z -= point.z;
346 
347  // Dot product between the (viewpoint - point) and the plane normal
348  float cos_theta = (vp_x * nx + vp_y * ny + vp_z * nz);
349 
350  // Flip the plane normal
351  if (cos_theta < 0)
352  {
353  nx *= -1;
354  ny *= -1;
355  nz *= -1;
356  }
357  }
358 
359  /** \brief The normal estimation method to use. Currently, 3 implementations are provided:
360  *
361  * - COVARIANCE_MATRIX
362  * - AVERAGE_3D_GRADIENT
363  * - AVERAGE_DEPTH_CHANGE
364  */
365  NormalEstimationMethod normal_estimation_method_;
366 
367  /** \brief The policy for handling borders. */
368  BorderPolicy border_policy_;
369 
370  /** The width of the neighborhood region used for computing the normal. */
371  int rect_width_{0};
372  int rect_width_2_{0};
373  int rect_width_4_{0};
374  /** The height of the neighborhood region used for computing the normal. */
375  int rect_height_{0};
376  int rect_height_2_{0};
377  int rect_height_4_{0};
378 
379  /** the threshold used to detect depth discontinuities */
380  float distance_threshold_{0.0f};
381 
382  /** integral image in x-direction */
383  IntegralImage2D<float, 3> integral_image_DX_;
384  /** integral image in y-direction */
385  IntegralImage2D<float, 3> integral_image_DY_;
386  /** integral image */
387  IntegralImage2D<float, 1> integral_image_depth_;
388  /** integral image xyz */
389  IntegralImage2D<float, 3> integral_image_XYZ_;
390 
391  /** derivatives in x-direction */
392  float *diff_x_{nullptr};
393  /** derivatives in y-direction */
394  float *diff_y_{nullptr};
395 
396  /** depth data */
397  float *depth_data_{nullptr};
398 
399  /** distance map */
400  float *distance_map_{nullptr};
401 
402  /** \brief Smooth data based on depth (true/false). */
403  bool use_depth_dependent_smoothing_{false};
404 
405  /** \brief Threshold for detecting depth discontinuities */
406  float max_depth_change_factor_;
407 
408  /** \brief */
409  float normal_smoothing_size_{10.0f};
410 
411  /** \brief True when a dataset has been received and the covariance_matrix data has been initialized. */
412  bool init_covariance_matrix_{false};
413 
414  /** \brief True when a dataset has been received and the average 3d gradient data has been initialized. */
415  bool init_average_3d_gradient_{false};
416 
417  /** \brief True when a dataset has been received and the simple 3d gradient data has been initialized. */
418  bool init_simple_3d_gradient_{false};
419 
420  /** \brief True when a dataset has been received and the depth change data has been initialized. */
421  bool init_depth_change_{false};
422 
423  /** \brief Values describing the viewpoint ("pinhole" camera model assumed). For per point viewpoints, inherit
424  * from NormalEstimation and provide your own computeFeature (). By default, the viewpoint is set to 0,0,0. */
425  float vpx_{0.0f}, vpy_{0.0f}, vpz_{0.0f};
426 
427  /** whether the sensor origin of the input cloud or a user given viewpoint should be used.*/
428  bool use_sensor_origin_{true};
429 
430  /** \brief This method should get called before starting the actual computation. */
431  bool
432  initCompute () override;
433 
434  /** \brief Internal initialization method for COVARIANCE_MATRIX estimation. */
435  void
436  initCovarianceMatrixMethod ();
437 
438  /** \brief Internal initialization method for AVERAGE_3D_GRADIENT estimation. */
439  void
440  initAverage3DGradientMethod ();
441 
442  /** \brief Internal initialization method for AVERAGE_DEPTH_CHANGE estimation. */
443  void
444  initAverageDepthChangeMethod ();
445 
446  /** \brief Internal initialization method for SIMPLE_3D_GRADIENT estimation. */
447  void
448  initSimple3DGradientMethod ();
449 
450  public:
452  };
453 }
454 
455 #ifdef PCL_NO_PRECOMPILE
456 #include <pcl/features/impl/integral_image_normal.hpp>
457 #endif
Feature represents the base feature class.
Definition: feature.h:107
int k_
The number of K nearest neighbors to use for each point.
Definition: feature.h:240
shared_ptr< Feature< PointInT, PointOutT > > Ptr
Definition: feature.h:114
std::string feature_name_
The feature name.
Definition: feature.h:220
shared_ptr< const Feature< PointInT, PointOutT > > ConstPtr
Definition: feature.h:115
KdTreePtr tree_
A pointer to the spatial search object.
Definition: feature.h:231
Surface normal estimation on organized data using integral images.
BorderPolicy
Different types of border handling.
NormalEstimationMethod
Different normal estimation methods.
void setDepthDependentSmoothing(bool use_depth_dependent_smoothing)
Set whether to use depth depending smoothing or not.
void setBorderPolicy(const BorderPolicy border_policy)
Sets the policy for handling borders.
void initData()
Initialize the data structures, based on the normal estimation method chosen.
void useSensorOriginAsViewPoint()
sets whether the sensor origin or a user given viewpoint should be used.
void setRectSize(const int width, const int height)
Set the regions size which is considered for normal estimation.
typename Feature< PointInT, PointOutT >::PointCloudOut PointCloudOut
void getViewPoint(float &vpx, float &vpy, float &vpz)
Get the viewpoint.
void setNormalEstimationMethod(NormalEstimationMethod normal_estimation_method)
Set the normal estimation method.
~IntegralImageNormalEstimation() override
Destructor.
float * getDistanceMap()
Returns a pointer to the distance map which was computed internally.
void computeFeatureFull(const float *distance_map, const float &bad_point, PointCloudOut &output)
Computes the normal for the complete cloud.
void setInputCloud(const typename PointCloudIn::ConstPtr &cloud) override
Provide a pointer to the input dataset (overwrites the PCLBase::setInputCloud method)
void computePointNormal(const int pos_x, const int pos_y, const unsigned point_index, PointOutT &normal)
Computes the normal at the specified position.
void computeFeature(PointCloudOut &output) override
Computes the normal for the complete cloud or only indices_ if provided.
void computeFeaturePart(const float *distance_map, const float &bad_point, PointCloudOut &output)
Computes the normal for part of the cloud specified by indices_.
void setViewPoint(float vpx, float vpy, float vpz)
Set the viewpoint.
void setNormalSmoothingSize(float normal_smoothing_size)
Set the normal smoothing size.
void setMaxDepthChangeFactor(float max_depth_change_factor)
The depth change threshold for computing object borders.
void computePointNormalMirror(const int pos_x, const int pos_y, const unsigned point_index, PointOutT &normal)
Computes the normal at the specified position with mirroring for border handling.
PointCloudConstPtr input_
The input point cloud dataset.
Definition: pcl_base.h:147
shared_ptr< const PointCloud< PointInT > > ConstPtr
Definition: point_cloud.h:414
#define PCL_MAKE_ALIGNED_OPERATOR_NEW
Macro to signal a class requires a custom allocator.
Definition: memory.h:86
Defines functions, macros and traits for allocating and using memory.
Defines all the PCL and non-PCL macros used.