Point Cloud Library (PCL)  1.14.1-dev
conditional_euclidean_clustering.hpp
1 /*
2  * Software License Agreement (BSD License)
3  *
4  * Point Cloud Library (PCL) - www.pointclouds.org
5  * Copyright (c) 2009, Willow Garage, Inc.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  *
12  * * Redistributions of source code must retain the above copyright
13  * notice, this list of conditions and the following disclaimer.
14  * * Redistributions in binary form must reproduce the above
15  * copyright notice, this list of conditions and the following
16  * disclaimer in the documentation and/or other materials provided
17  * with the distribution.
18  * * Neither the name of the copyright holder(s) nor the names of its
19  * contributors may be used to endorse or promote products derived
20  * from this software without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
23  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
24  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
25  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
26  * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
27  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
28  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
29  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
30  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
32  * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
33  * POSSIBILITY OF SUCH DAMAGE.
34  *
35  */
36 
37 #ifndef PCL_SEGMENTATION_IMPL_CONDITIONAL_EUCLIDEAN_CLUSTERING_HPP_
38 #define PCL_SEGMENTATION_IMPL_CONDITIONAL_EUCLIDEAN_CLUSTERING_HPP_
39 
40 #include <pcl/segmentation/conditional_euclidean_clustering.h>
41 #include <pcl/search/organized.h> // for OrganizedNeighbor
42 #include <pcl/search/kdtree.h> // for KdTree
43 
44 template<typename PointT> void
46 {
47  // Prepare output (going to use push_back)
48  clusters.clear ();
49  if (extract_removed_clusters_)
50  {
51  small_clusters_->clear ();
52  large_clusters_->clear ();
53  }
54 
55  // Validity checks
56  if (!initCompute () || input_->points.empty () || indices_->empty () || !condition_function_)
57  return;
58 
59  // Initialize the search class
60  if (!searcher_)
61  {
62  if (input_->isOrganized ())
63  searcher_.reset (new pcl::search::OrganizedNeighbor<PointT> (false)); // not requiring sorted results is much faster
64  else
65  searcher_.reset (new pcl::search::KdTree<PointT> (false)); // not requiring sorted results is much faster
66  }
67  searcher_->setInputCloud (input_, indices_);
68  // If searcher_ gives sorted results, we can skip the first one because it is the query point itself
69  const int nn_start_idx = searcher_->getSortedResults () ? 1 : 0;
70 
71  // Temp variables used by search class
72  Indices nn_indices;
73  std::vector<float> nn_distances;
74 
75  // Create a bool vector of processed point indices, and initialize it to false
76  // Need to have it contain all possible points because radius search can not return indices into indices
77  std::vector<bool> processed (input_->size (), false);
78 
79  // Process all points indexed by indices_
80  for (const auto& iindex : (*indices_)) // iindex = input index
81  {
82  // Has this point been processed before?
83  if (iindex == UNAVAILABLE || processed[iindex])
84  continue;
85 
86  // Set up a new growing cluster
87  Indices current_cluster;
88  int cii = 0; // cii = cluster indices iterator
89 
90  // Add the point to the cluster
91  current_cluster.push_back (iindex);
92  processed[iindex] = true;
93 
94  // Process the current cluster (it can be growing in size as it is being processed)
95  while (cii < static_cast<int> (current_cluster.size ()))
96  {
97  // Search for neighbors around the current seed point of the current cluster
98  if (searcher_->radiusSearch ((*input_)[current_cluster[cii]], cluster_tolerance_, nn_indices, nn_distances) < 1)
99  {
100  cii++;
101  continue;
102  }
103 
104  // Process the neighbors
105  for (int nii = nn_start_idx; nii < static_cast<int> (nn_indices.size ()); ++nii) // nii = neighbor indices iterator
106  {
107  // Has this point been processed before?
108  if (nn_indices[nii] == UNAVAILABLE || processed[nn_indices[nii]])
109  continue;
110 
111  // Validate if condition holds
112  if (condition_function_ ((*input_)[current_cluster[cii]], (*input_)[nn_indices[nii]], nn_distances[nii]))
113  {
114  // Add the point to the cluster
115  current_cluster.push_back (nn_indices[nii]);
116  processed[nn_indices[nii]] = true;
117  }
118  }
119  cii++;
120  }
121 
122  // If extracting removed clusters, all clusters need to be saved, otherwise only the ones within the given cluster size range
123  if (extract_removed_clusters_ ||
124  (static_cast<int> (current_cluster.size ()) >= min_cluster_size_ &&
125  static_cast<int> (current_cluster.size ()) <= max_cluster_size_))
126  {
128  pi.header = input_->header;
129  pi.indices.resize (current_cluster.size ());
130  for (int ii = 0; ii < static_cast<int> (current_cluster.size ()); ++ii) // ii = indices iterator
131  pi.indices[ii] = current_cluster[ii];
132 
133  if (extract_removed_clusters_ && static_cast<int> (current_cluster.size ()) < min_cluster_size_)
134  small_clusters_->push_back (pi);
135  else if (extract_removed_clusters_ && static_cast<int> (current_cluster.size ()) > max_cluster_size_)
136  large_clusters_->push_back (pi);
137  else
138  clusters.push_back (pi);
139  }
140  }
141 
142  deinitCompute ();
143 }
144 
145 #define PCL_INSTANTIATE_ConditionalEuclideanClustering(T) template class PCL_EXPORTS pcl::ConditionalEuclideanClustering<T>;
146 
147 #endif // PCL_SEGMENTATION_IMPL_CONDITIONAL_EUCLIDEAN_CLUSTERING_HPP_
148 
void segment(IndicesClusters &clusters)
Segment the input into separate clusters.
search::KdTree is a wrapper class which inherits the pcl::KdTree class for performing search function...
Definition: kdtree.h:62
OrganizedNeighbor is a class for optimized nearest neighbor search in organized projectable point clo...
Definition: organized.h:65
IndicesAllocator<> Indices
Type used for indices in PCL.
Definition: types.h:133
std::vector< pcl::PointIndices > IndicesClusters
::pcl::PCLHeader header
Definition: PointIndices.h:18