Point Cloud Library (PCL)  1.15.1-dev
conditional_euclidean_clustering.hpp
1 /*
2  * Software License Agreement (BSD License)
3  *
4  * Point Cloud Library (PCL) - www.pointclouds.org
5  * Copyright (c) 2009, Willow Garage, Inc.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  *
12  * * Redistributions of source code must retain the above copyright
13  * notice, this list of conditions and the following disclaimer.
14  * * Redistributions in binary form must reproduce the above
15  * copyright notice, this list of conditions and the following
16  * disclaimer in the documentation and/or other materials provided
17  * with the distribution.
18  * * Neither the name of the copyright holder(s) nor the names of its
19  * contributors may be used to endorse or promote products derived
20  * from this software without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
23  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
24  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
25  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
26  * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
27  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
28  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
29  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
30  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
32  * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
33  * POSSIBILITY OF SUCH DAMAGE.
34  *
35  */
36 
37 #ifndef PCL_SEGMENTATION_IMPL_CONDITIONAL_EUCLIDEAN_CLUSTERING_HPP_
38 #define PCL_SEGMENTATION_IMPL_CONDITIONAL_EUCLIDEAN_CLUSTERING_HPP_
39 
40 #include <pcl/segmentation/conditional_euclidean_clustering.h>
41 #include <pcl/search/auto.h>
42 
43 template<typename PointT> void
45 {
46  // Prepare output (going to use push_back)
47  clusters.clear ();
48  if (extract_removed_clusters_)
49  {
50  small_clusters_->clear ();
51  large_clusters_->clear ();
52  }
53 
54  // Validity checks
55  if (!initCompute () || input_->points.empty () || indices_->empty () || !condition_function_)
56  return;
57 
58  // Initialize the search class
59  if (!searcher_)
60  {
61  searcher_.reset (pcl::search::autoSelectMethod<PointT>(input_, indices_, false, pcl::search::Purpose::radius_search)); // not requiring sorted results is much faster
62  }
63  else
64  {
65  searcher_->setInputCloud (input_, indices_);
66  }
67  // If searcher_ gives sorted results, we can skip the first one because it is the query point itself
68  const int nn_start_idx = searcher_->getSortedResults () ? 1 : 0;
69 
70  // Temp variables used by search class
71  Indices nn_indices;
72  std::vector<float> nn_distances;
73 
74  // Create a bool vector of processed point indices, and initialize it to false
75  // Need to have it contain all possible points because radius search can not return indices into indices
76  std::vector<bool> processed (input_->size (), false);
77 
78  // Process all points indexed by indices_
79  for (const auto& iindex : (*indices_)) // iindex = input index
80  {
81  // Has this point been processed before?
82  if (iindex == UNAVAILABLE || processed[iindex])
83  continue;
84 
85  // Set up a new growing cluster
86  Indices current_cluster;
87  int cii = 0; // cii = cluster indices iterator
88 
89  // Add the point to the cluster
90  current_cluster.push_back (iindex);
91  processed[iindex] = true;
92 
93  // Process the current cluster (it can be growing in size as it is being processed)
94  while (cii < static_cast<int> (current_cluster.size ()))
95  {
96  // Search for neighbors around the current seed point of the current cluster
97  if (searcher_->radiusSearch ((*input_)[current_cluster[cii]], cluster_tolerance_, nn_indices, nn_distances) < 1)
98  {
99  cii++;
100  continue;
101  }
102 
103  // Process the neighbors
104  for (int nii = nn_start_idx; nii < static_cast<int> (nn_indices.size ()); ++nii) // nii = neighbor indices iterator
105  {
106  // Has this point been processed before?
107  if (nn_indices[nii] == UNAVAILABLE || processed[nn_indices[nii]])
108  continue;
109 
110  // Validate if condition holds
111  if (condition_function_ ((*input_)[current_cluster[cii]], (*input_)[nn_indices[nii]], nn_distances[nii]))
112  {
113  // Add the point to the cluster
114  current_cluster.push_back (nn_indices[nii]);
115  processed[nn_indices[nii]] = true;
116  }
117  }
118  cii++;
119  }
120 
121  // If extracting removed clusters, all clusters need to be saved, otherwise only the ones within the given cluster size range
122  if (extract_removed_clusters_ ||
123  (static_cast<int> (current_cluster.size ()) >= min_cluster_size_ &&
124  static_cast<int> (current_cluster.size ()) <= max_cluster_size_))
125  {
127  pi.header = input_->header;
128  pi.indices.resize (current_cluster.size ());
129  for (int ii = 0; ii < static_cast<int> (current_cluster.size ()); ++ii) // ii = indices iterator
130  pi.indices[ii] = current_cluster[ii];
131 
132  if (extract_removed_clusters_ && static_cast<int> (current_cluster.size ()) < min_cluster_size_)
133  small_clusters_->push_back (pi);
134  else if (extract_removed_clusters_ && static_cast<int> (current_cluster.size ()) > max_cluster_size_)
135  large_clusters_->push_back (pi);
136  else
137  clusters.push_back (pi);
138  }
139  }
140 
141  deinitCompute ();
142 }
143 
144 #define PCL_INSTANTIATE_ConditionalEuclideanClustering(T) template class PCL_EXPORTS pcl::ConditionalEuclideanClustering<T>;
145 
146 #endif // PCL_SEGMENTATION_IMPL_CONDITIONAL_EUCLIDEAN_CLUSTERING_HPP_
147 
void segment(IndicesClusters &clusters)
Segment the input into separate clusters.
@ radius_search
The search method will mainly be used for radiusSearch.
IndicesAllocator<> Indices
Type used for indices in PCL.
Definition: types.h:133
std::vector< pcl::PointIndices > IndicesClusters
::pcl::PCLHeader header
Definition: PointIndices.h:18