Point Cloud Library (PCL)  1.14.1-dev
conditional_euclidean_clustering.h
1 /*
2  * Software License Agreement (BSD License)
3  *
4  * Point Cloud Library (PCL) - www.pointclouds.org
5  * Copyright (c) 2010-2011, Willow Garage, Inc.
6  *
7  * All rights reserved.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  *
13  * * Redistributions of source code must retain the above copyright
14  * notice, this list of conditions and the following disclaimer.
15  * * Redistributions in binary form must reproduce the above
16  * copyright notice, this list of conditions and the following
17  * disclaimer in the documentation and/or other materials provided
18  * with the distribution.
19  * * Neither the name of the copyright holder(s) nor the names of its
20  * contributors may be used to endorse or promote products derived
21  * from this software without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
24  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
25  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
26  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
27  * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
28  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
29  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
30  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
31  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
33  * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
34  * POSSIBILITY OF SUCH DAMAGE.
35  *
36  */
37 
38 #pragma once
39 
40 #include <pcl/memory.h>
41 #include <pcl/pcl_base.h>
42 #include <pcl/pcl_macros.h>
43 #include <pcl/console/print.h> // for PCL_WARN
44 #include <pcl/search/search.h> // for Search
45 
46 #include <functional>
47 
48 namespace pcl
49 {
50  using IndicesClusters = std::vector<pcl::PointIndices>;
51  using IndicesClustersPtr = shared_ptr<std::vector<pcl::PointIndices> >;
52 
53  /** \brief @b ConditionalEuclideanClustering performs segmentation based on Euclidean distance and a user-defined clustering condition.
54  * \details The condition that need to hold is currently passed using a function pointer.
55  * For more information check the documentation of setConditionFunction() or the usage example below:
56  * \code
57  * bool
58  * enforceIntensitySimilarity (const pcl::PointXYZI& point_a, const pcl::PointXYZI& point_b, float squared_distance)
59  * {
60  * if (std::abs (point_a.intensity - point_b.intensity) < 0.1f)
61  * return (true);
62  * else
63  * return (false);
64  * }
65  * // ...
66  * // Somewhere down to the main code
67  * // ...
68  * pcl::ConditionalEuclideanClustering<pcl::PointXYZI> cec (true);
69  * cec.setInputCloud (cloud_in);
70  * cec.setConditionFunction (&enforceIntensitySimilarity);
71  * // Points within this distance from one another are going to need to validate the enforceIntensitySimilarity function to be part of the same cluster:
72  * cec.setClusterTolerance (0.09f);
73  * // Size constraints for the clusters:
74  * cec.setMinClusterSize (5);
75  * cec.setMaxClusterSize (30);
76  * // The resulting clusters (an array of pointindices):
77  * cec.segment (*clusters);
78  * // The clusters that are too small or too large in size can also be extracted separately:
79  * cec.getRemovedClusters (small_clusters, large_clusters);
80  * \endcode
81  * \author Frits Florentinus
82  * \ingroup segmentation
83  */
84  template<typename PointT>
85  class ConditionalEuclideanClustering : public PCLBase<PointT>
86  {
87  protected:
89 
94 
95  public:
96  /** \brief Constructor.
97  * \param[in] extract_removed_clusters Set to true if you want to be able to extract the clusters that are too large or too small (default = false)
98  */
99  ConditionalEuclideanClustering (bool extract_removed_clusters = false) :
100  searcher_ (),
101  condition_function_ (),
102  extract_removed_clusters_ (extract_removed_clusters),
103  small_clusters_ (new pcl::IndicesClusters),
104  large_clusters_ (new pcl::IndicesClusters)
105  {
106  }
107 
108  /** \brief Provide a pointer to the search object.
109  * \param[in] tree a pointer to the spatial search object.
110  */
111  inline void
113  {
114  searcher_ = tree;
115  }
116 
117  /** \brief Get a pointer to the search method used.
118  */
119  inline const SearcherPtr&
121  {
122  return searcher_;
123  }
124 
125  /** \brief Set the condition that needs to hold for neighboring points to be considered part of the same cluster.
126  * \details Any two points within a certain distance from one another will need to evaluate this condition in order to be made part of the same cluster.
127  * The distance can be set using setClusterTolerance().
128  * <br>
129  * Note that for a point to be part of a cluster, the condition only needs to hold for at least 1 point pair.
130  * To clarify, the following statement is false:
131  * Any two points within a cluster always evaluate this condition function to true.
132  * <br><br>
133  * The input arguments of the condition function are:
134  * <ul>
135  * <li>PointT The first point of the point pair</li>
136  * <li>PointT The second point of the point pair</li>
137  * <li>float The squared distance between the points</li>
138  * </ul>
139  * The output argument is a boolean, returning true will merge the second point into the cluster of the first point.
140  * \param[in] condition_function The condition function that needs to hold for clustering
141  */
142  inline void
143  setConditionFunction (bool (*condition_function) (const PointT&, const PointT&, float))
144  {
145  condition_function_ = condition_function;
146  }
147 
148  /** \brief Set the condition that needs to hold for neighboring points to be considered part of the same cluster.
149  * This is an overloaded function provided for convenience. See the documentation for setConditionFunction(). */
150  inline void
151  setConditionFunction (std::function<bool (const PointT&, const PointT&, float)> condition_function)
152  {
153  condition_function_ = condition_function;
154  }
155 
156  /** \brief Set the spatial tolerance for new cluster candidates.
157  * \details Any two points within this distance from one another will need to evaluate a certain condition in order to be made part of the same cluster.
158  * The condition can be set using setConditionFunction().
159  * \param[in] cluster_tolerance The distance to scan for cluster candidates (default = 0.0)
160  */
161  inline void
162  setClusterTolerance (float cluster_tolerance)
163  {
164  cluster_tolerance_ = cluster_tolerance;
165  }
166 
167  /** \brief Get the spatial tolerance for new cluster candidates.*/
168  inline float
170  {
171  return (cluster_tolerance_);
172  }
173 
174  /** \brief Set the minimum number of points that a cluster needs to contain in order to be considered valid.
175  * \param[in] min_cluster_size The minimum cluster size (default = 1)
176  */
177  inline void
178  setMinClusterSize (int min_cluster_size)
179  {
180  min_cluster_size_ = min_cluster_size;
181  }
182 
183  /** \brief Get the minimum number of points that a cluster needs to contain in order to be considered valid.*/
184  inline int
186  {
187  return (min_cluster_size_);
188  }
189 
190  /** \brief Set the maximum number of points that a cluster needs to contain in order to be considered valid.
191  * \param[in] max_cluster_size The maximum cluster size (default = unlimited)
192  */
193  inline void
194  setMaxClusterSize (int max_cluster_size)
195  {
196  max_cluster_size_ = max_cluster_size;
197  }
198 
199  /** \brief Get the maximum number of points that a cluster needs to contain in order to be considered valid.*/
200  inline int
202  {
203  return (max_cluster_size_);
204  }
205 
206  /** \brief Segment the input into separate clusters.
207  * \details The input can be set using setInputCloud() and setIndices().
208  * <br>
209  * The size constraints for the resulting clusters can be set using setMinClusterSize() and setMaxClusterSize().
210  * <br>
211  * The region growing parameters can be set using setConditionFunction() and setClusterTolerance().
212  * <br>
213  * \param[out] clusters The resultant set of indices, indexing the points of the input cloud that correspond to the clusters
214  */
215  void
216  segment (IndicesClusters &clusters);
217 
218  /** \brief Get the clusters that are invalidated due to size constraints.
219  * \note The constructor of this class needs to be initialized with true, and the segment method needs to have been called prior to using this method.
220  * \param[out] small_clusters The resultant clusters that contain less than min_cluster_size points
221  * \param[out] large_clusters The resultant clusters that contain more than max_cluster_size points
222  */
223  inline void
224  getRemovedClusters (IndicesClustersPtr &small_clusters, IndicesClustersPtr &large_clusters)
225  {
226  if (!extract_removed_clusters_)
227  {
228  PCL_WARN("[pcl::ConditionalEuclideanClustering::getRemovedClusters] You need to set extract_removed_clusters to true (in this class' constructor) if you want to use this functionality.\n");
229  return;
230  }
231  small_clusters = small_clusters_;
232  large_clusters = large_clusters_;
233  }
234 
235  private:
236  /** \brief A pointer to the spatial search object */
237  SearcherPtr searcher_{nullptr};
238 
239  /** \brief The condition function that needs to hold for clustering */
240  std::function<bool (const PointT&, const PointT&, float)> condition_function_;
241 
242  /** \brief The distance to scan for cluster candidates (default = 0.0) */
243  float cluster_tolerance_{0.0f};
244 
245  /** \brief The minimum cluster size (default = 1) */
246  int min_cluster_size_{1};
247 
248  /** \brief The maximum cluster size (default = unlimited) */
249  int max_cluster_size_{std::numeric_limits<int>::max ()};
250 
251  /** \brief Set to true if you want to be able to extract the clusters that are too large or too small (default = false) */
252  bool extract_removed_clusters_;
253 
254  /** \brief The resultant clusters that contain less than min_cluster_size points */
255  pcl::IndicesClustersPtr small_clusters_{nullptr};
256 
257  /** \brief The resultant clusters that contain more than max_cluster_size points */
258  pcl::IndicesClustersPtr large_clusters_{nullptr};
259 
260  public:
262  };
263 }
264 
265 #ifdef PCL_NO_PRECOMPILE
266 #include <pcl/segmentation/impl/conditional_euclidean_clustering.hpp>
267 #endif
ConditionalEuclideanClustering performs segmentation based on Euclidean distance and a user-defined c...
int getMaxClusterSize()
Get the maximum number of points that a cluster needs to contain in order to be considered valid.
void setMinClusterSize(int min_cluster_size)
Set the minimum number of points that a cluster needs to contain in order to be considered valid.
void setSearchMethod(const SearcherPtr &tree)
Provide a pointer to the search object.
void setConditionFunction(std::function< bool(const PointT &, const PointT &, float)> condition_function)
Set the condition that needs to hold for neighboring points to be considered part of the same cluster...
typename pcl::search::Search< PointT >::Ptr SearcherPtr
float getClusterTolerance()
Get the spatial tolerance for new cluster candidates.
void setConditionFunction(bool(*condition_function)(const PointT &, const PointT &, float))
Set the condition that needs to hold for neighboring points to be considered part of the same cluster...
void segment(IndicesClusters &clusters)
Segment the input into separate clusters.
void setMaxClusterSize(int max_cluster_size)
Set the maximum number of points that a cluster needs to contain in order to be considered valid.
const SearcherPtr & getSearchMethod() const
Get a pointer to the search method used.
void setClusterTolerance(float cluster_tolerance)
Set the spatial tolerance for new cluster candidates.
int getMinClusterSize()
Get the minimum number of points that a cluster needs to contain in order to be considered valid.
void getRemovedClusters(IndicesClustersPtr &small_clusters, IndicesClustersPtr &large_clusters)
Get the clusters that are invalidated due to size constraints.
ConditionalEuclideanClustering(bool extract_removed_clusters=false)
Constructor.
PCL base class.
Definition: pcl_base.h:70
shared_ptr< pcl::search::Search< PointT > > Ptr
Definition: search.h:81
#define PCL_MAKE_ALIGNED_OPERATOR_NEW
Macro to signal a class requires a custom allocator.
Definition: memory.h:86
Defines functions, macros and traits for allocating and using memory.
shared_ptr< std::vector< pcl::PointIndices > > IndicesClustersPtr
std::vector< pcl::PointIndices > IndicesClusters
Defines all the PCL and non-PCL macros used.
A point structure representing Euclidean xyz coordinates, and the RGB color.