Point Cloud Library (PCL)  1.11.1-dev
usc.hpp
1 /*
2  * Software License Agreement (BSD License)
3  *
4  * Point Cloud Library (PCL) - www.pointclouds.org
5  * Copyright (c) 2010-2011, Willow Garage, Inc.
6  * Copyright (c) 2012-, Open Perception, Inc.
7  *
8  * All rights reserved.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  *
14  * * Redistributions of source code must retain the above copyright
15  * notice, this list of conditions and the following disclaimer.
16  * * Redistributions in binary form must reproduce the above
17  * copyright notice, this list of conditions and the following
18  * disclaimer in the documentation and/or other materials provided
19  * with the distribution.
20  * * Neither the name of the copyright holder(s) nor the names of its
21  * contributors may be used to endorse or promote products derived
22  * from this software without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
25  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
26  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
27  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
28  * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
29  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
30  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
31  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
32  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
34  * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35  * POSSIBILITY OF SUCH DAMAGE.
36  *
37  * $Id$
38  *
39  */
40 
41 #pragma once
42 
43 #include <numeric> // for partial_sum
44 #include <pcl/features/usc.h>
45 #include <pcl/features/shot_lrf.h>
46 #include <pcl/common/angles.h>
47 #include <pcl/common/geometry.h>
48 #include <pcl/common/point_tests.h> // for pcl::isFinite
49 #include <pcl/common/utils.h>
50 
51 
52 //////////////////////////////////////////////////////////////////////////////////////////////
53 template <typename PointInT, typename PointOutT, typename PointRFT> bool
55 {
57  {
58  PCL_ERROR ("[pcl::%s::initCompute] Init failed.\n", getClassName ().c_str ());
59  return (false);
60  }
61 
62  // Default LRF estimation alg: SHOTLocalReferenceFrameEstimation
64  lrf_estimator->setRadiusSearch (local_radius_);
65  lrf_estimator->setInputCloud (input_);
66  lrf_estimator->setIndices (indices_);
67  if (!fake_surface_)
68  lrf_estimator->setSearchSurface(surface_);
69 
71  {
72  PCL_ERROR ("[pcl::%s::initCompute] Init failed.\n", getClassName ().c_str ());
73  return (false);
74  }
75 
76  if (search_radius_< min_radius_)
77  {
78  PCL_ERROR ("[pcl::%s::initCompute] search_radius_ must be GREATER than min_radius_.\n", getClassName ().c_str ());
79  return (false);
80  }
81 
82  // Update descriptor length
83  descriptor_length_ = elevation_bins_ * azimuth_bins_ * radius_bins_;
84 
85  // Compute radial, elevation and azimuth divisions
86  float azimuth_interval = 360.0f / static_cast<float> (azimuth_bins_);
87  float elevation_interval = 180.0f / static_cast<float> (elevation_bins_);
88 
89  // Reallocate divisions and volume lut
90  radii_interval_.clear ();
91  phi_divisions_.clear ();
92  theta_divisions_.clear ();
93  volume_lut_.clear ();
94 
95  // Fills radii interval based on formula (1) in section 2.1 of Frome's paper
96  radii_interval_.resize (radius_bins_ + 1);
97  for (std::size_t j = 0; j < radius_bins_ + 1; j++)
98  radii_interval_[j] = static_cast<float> (std::exp (std::log (min_radius_) + ((static_cast<float> (j) / static_cast<float> (radius_bins_)) * std::log (search_radius_/min_radius_))));
99 
100  // Fill theta divisions of elevation
101  theta_divisions_.resize (elevation_bins_ + 1, elevation_interval);
102  theta_divisions_[0] = 0;
103  std::partial_sum(theta_divisions_.begin (), theta_divisions_.end (), theta_divisions_.begin ());
104 
105  // Fill phi divisions of elevation
106  phi_divisions_.resize (azimuth_bins_ + 1, azimuth_interval);
107  phi_divisions_[0] = 0;
108  std::partial_sum(phi_divisions_.begin (), phi_divisions_.end (), phi_divisions_.begin ());
109 
110  // LookUp Table that contains the volume of all the bins
111  // "phi" term of the volume integral
112  // "integr_phi" has always the same value so we compute it only one time
113  float integr_phi = pcl::deg2rad (phi_divisions_[1]) - pcl::deg2rad (phi_divisions_[0]);
114  // exponential to compute the cube root using pow
115  float e = 1.0f / 3.0f;
116  // Resize volume look up table
117  volume_lut_.resize (radius_bins_ * elevation_bins_ * azimuth_bins_);
118  // Fill volumes look up table
119  for (std::size_t j = 0; j < radius_bins_; j++)
120  {
121  // "r" term of the volume integral
122  float integr_r = (radii_interval_[j+1]*radii_interval_[j+1]*radii_interval_[j+1] / 3) - (radii_interval_[j]*radii_interval_[j]*radii_interval_[j]/ 3);
123 
124  for (std::size_t k = 0; k < elevation_bins_; k++)
125  {
126  // "theta" term of the volume integral
127  float integr_theta = std::cos (deg2rad (theta_divisions_[k])) - std::cos (deg2rad (theta_divisions_[k+1]));
128  // Volume
129  float V = integr_phi * integr_theta * integr_r;
130  // Compute cube root of the computed volume commented for performance but left
131  // here for clarity
132  // float cbrt = pow(V, e);
133  // cbrt = 1 / cbrt;
134 
135  for (std::size_t l = 0; l < azimuth_bins_; l++)
136  // Store in lut 1/cbrt
137  //volume_lut_[ (l*elevation_bins_*radius_bins_) + k*radius_bins_ + j ] = cbrt;
138  volume_lut_[(l*elevation_bins_*radius_bins_) + k*radius_bins_ + j] = 1.0f / powf (V, e);
139  }
140  }
141  return (true);
142 }
143 
144 //////////////////////////////////////////////////////////////////////////////////////////////
145 template <typename PointInT, typename PointOutT, typename PointRFT> void
146 pcl::UniqueShapeContext<PointInT, PointOutT, PointRFT>::computePointDescriptor (std::size_t index, /*float rf[9],*/ std::vector<float> &desc)
147 {
148  pcl::Vector3fMapConst origin = (*input_)[(*indices_)[index]].getVector3fMap ();
149 
150  const Eigen::Vector3f x_axis ((*frames_)[index].x_axis[0],
151  (*frames_)[index].x_axis[1],
152  (*frames_)[index].x_axis[2]);
153  //const Eigen::Vector3f& y_axis = (*frames_)[index].y_axis.getNormalVector3fMap ();
154  const Eigen::Vector3f normal ((*frames_)[index].z_axis[0],
155  (*frames_)[index].z_axis[1],
156  (*frames_)[index].z_axis[2]);
157 
158  // Find every point within specified search_radius_
159  pcl::Indices nn_indices;
160  std::vector<float> nn_dists;
161  const std::size_t neighb_cnt = searchForNeighbors ((*indices_)[index], search_radius_, nn_indices, nn_dists);
162  // For each point within radius
163  for (std::size_t ne = 0; ne < neighb_cnt; ne++)
164  {
165  if (pcl::utils::equal(nn_dists[ne], 0.0f))
166  continue;
167  // Get neighbours coordinates
168  Eigen::Vector3f neighbour = (*surface_)[nn_indices[ne]].getVector3fMap ();
169 
170  // ----- Compute current neighbour polar coordinates -----
171 
172  // Get distance between the neighbour and the origin
173  float r = std::sqrt (nn_dists[ne]);
174 
175  // Project point into the tangent plane
176  Eigen::Vector3f proj;
177  pcl::geometry::project (neighbour, origin, normal, proj);
178  proj -= origin;
179 
180  // Normalize to compute the dot product
181  proj.normalize ();
182 
183  // Compute the angle between the projection and the x axis in the interval [0,360]
184  Eigen::Vector3f cross = x_axis.cross (proj);
185  float phi = rad2deg (std::atan2 (cross.norm (), x_axis.dot (proj)));
186  phi = cross.dot (normal) < 0.f ? (360.0f - phi) : phi;
187  /// Compute the angle between the neighbour and the z axis (normal) in the interval [0, 180]
188  Eigen::Vector3f no = neighbour - origin;
189  no.normalize ();
190  float theta = normal.dot (no);
191  theta = pcl::rad2deg (std::acos (std::min (1.0f, std::max (-1.0f, theta))));
192 
193  /// Compute the Bin(j, k, l) coordinates of current neighbour
194  const auto rad_min = std::lower_bound(std::next (radii_interval_.cbegin ()), radii_interval_.cend (), r);
195  const auto theta_min = std::lower_bound(std::next (theta_divisions_.cbegin ()), theta_divisions_.cend (), theta);
196  const auto phi_min = std::lower_bound(std::next (phi_divisions_.cbegin ()), phi_divisions_.cend (), phi);
197 
198  /// Bin (j, k, l)
199  const auto j = std::distance(radii_interval_.cbegin (), std::prev(rad_min));
200  const auto k = std::distance(theta_divisions_.cbegin (), std::prev(theta_min));
201  const auto l = std::distance(phi_divisions_.cbegin (), std::prev(phi_min));
202 
203  /// Local point density = number of points in a sphere of radius "point_density_radius_" around the current neighbour
204  pcl::Indices neighbour_indices;
205  std::vector<float> neighbour_didtances;
206  float point_density = static_cast<float> (searchForNeighbors (*surface_, nn_indices[ne], point_density_radius_, neighbour_indices, neighbour_didtances));
207  /// point_density is always bigger than 0 because FindPointsWithinRadius returns at least the point itself
208  float w = (1.0f / point_density) * volume_lut_[(l*elevation_bins_*radius_bins_) +
209  (k*radius_bins_) +
210  j];
211 
212  assert (w >= 0.0);
213  if (w == std::numeric_limits<float>::infinity ())
214  PCL_ERROR ("Shape Context Error INF!\n");
215  if (std::isnan(w))
216  PCL_ERROR ("Shape Context Error IND!\n");
217  /// Accumulate w into correspondent Bin(j,k,l)
218  desc[(l*elevation_bins_*radius_bins_) + (k*radius_bins_) + j] += w;
219 
220  assert (desc[(l*elevation_bins_*radius_bins_) + (k*radius_bins_) + j] >= 0);
221  } // end for each neighbour
222 }
223 
224 //////////////////////////////////////////////////////////////////////////////////////////////
225 template <typename PointInT, typename PointOutT, typename PointRFT> void
227 {
228  assert (descriptor_length_ == 1960);
229 
230  output.is_dense = true;
231 
232  for (std::size_t point_index = 0; point_index < indices_->size (); ++point_index)
233  {
234  //output[point_index].descriptor.resize (descriptor_length_);
235 
236  // If the point is not finite, set the descriptor to NaN and continue
237  const PointRFT& current_frame = (*frames_)[point_index];
238  if (!isFinite ((*input_)[(*indices_)[point_index]]) ||
239  !std::isfinite (current_frame.x_axis[0]) ||
240  !std::isfinite (current_frame.y_axis[0]) ||
241  !std::isfinite (current_frame.z_axis[0]) )
242  {
243  std::fill (output[point_index].descriptor, output[point_index].descriptor + descriptor_length_,
244  std::numeric_limits<float>::quiet_NaN ());
245  std::fill (output[point_index].rf, output[point_index].rf + 9, 0);
246  output.is_dense = false;
247  continue;
248  }
249 
250  for (int d = 0; d < 3; ++d)
251  {
252  output[point_index].rf[0 + d] = current_frame.x_axis[d];
253  output[point_index].rf[3 + d] = current_frame.y_axis[d];
254  output[point_index].rf[6 + d] = current_frame.z_axis[d];
255  }
256 
257  std::vector<float> descriptor (descriptor_length_);
258  computePointDescriptor (point_index, descriptor);
259  std::copy (descriptor.begin (), descriptor.end (), output[point_index].descriptor);
260  }
261 }
262 
263 #define PCL_INSTANTIATE_UniqueShapeContext(T,OutT,RFT) template class PCL_EXPORTS pcl::UniqueShapeContext<T,OutT,RFT>;
264 
pcl::FeatureWithLocalReferenceFrames
FeatureWithLocalReferenceFrames provides a public interface for descriptor extractor classes which ne...
Definition: feature.h:448
pcl::geometry::distance
float distance(const PointT &p1, const PointT &p2)
Definition: geometry.h:60
pcl::isFinite
bool isFinite(const PointT &pt)
Tests if the 3D components of a point are all finite param[in] pt point to be tested return true if f...
Definition: point_tests.h:55
geometry.h
pcl::PCLBase< PointInT >::setInputCloud
virtual void setInputCloud(const PointCloudConstPtr &cloud)
Provide a pointer to the input dataset.
Definition: pcl_base.hpp:65
angles.h
pcl::geometry::project
void project(const PointT &point, const PointT &plane_origin, const NormalT &plane_normal, PointT &projected)
Definition: geometry.h:81
pcl::UniqueShapeContext::PointCloudOut
typename Feature< PointInT, PointOutT >::PointCloudOut PointCloudOut
Definition: usc.h:78
pcl::SHOTLocalReferenceFrameEstimation
SHOTLocalReferenceFrameEstimation estimates the Local Reference Frame used in the calculation of the ...
Definition: shot_lrf.h:65
pcl::PCLBase< PointInT >::setIndices
virtual void setIndices(const IndicesPtr &indices)
Provide a pointer to the vector of indices that represents the input data.
Definition: pcl_base.hpp:72
pcl::deg2rad
float deg2rad(float alpha)
Convert an angle from degrees to radians.
Definition: angles.hpp:67
pcl::UniqueShapeContext::computePointDescriptor
void computePointDescriptor(std::size_t index, std::vector< float > &desc)
Compute 3D shape context feature descriptor.
Definition: usc.hpp:146
pcl::Indices
IndicesAllocator<> Indices
Type used for indices in PCL.
Definition: types.h:133
pcl::SHOTLocalReferenceFrameEstimation::Ptr
shared_ptr< SHOTLocalReferenceFrameEstimation< PointInT, PointOutT > > Ptr
Definition: shot_lrf.h:68
pcl::Vector3fMapConst
const Eigen::Map< const Eigen::Vector3f > Vector3fMapConst
Definition: point_types.hpp:183
pcl::Feature< PointInT, ReferenceFrame >::setSearchSurface
void setSearchSurface(const PointCloudInConstPtr &cloud)
Provide a pointer to a dataset to add additional information to estimate the features for every point...
Definition: feature.h:149
pcl::UniqueShapeContext::computeFeature
void computeFeature(PointCloudOut &output) override
The actual feature computation.
Definition: usc.hpp:226
pcl::UniqueShapeContext::initCompute
bool initCompute() override
Initialize computation by allocating all the intervals and the volume lookup table.
Definition: usc.hpp:54
pcl::Feature< PointInT, ReferenceFrame >::setRadiusSearch
void setRadiusSearch(double radius)
Set the sphere radius that is to be used for determining the nearest neighbors used for the feature e...
Definition: feature.h:201
pcl::utils::equal
bool equal(T val1, T val2, T eps=std::numeric_limits< T >::min())
Check if val1 and val2 are equal to an epsilon extent.
Definition: utils.h:55
pcl::rad2deg
float rad2deg(float alpha)
Convert an angle from radians to degrees.
Definition: angles.hpp:61
pcl::Feature
Feature represents the base feature class.
Definition: feature.h:106