Point Cloud Library (PCL)  1.14.1-dev
sac_model_normal_sphere.hpp
1 /*
2  * Software License Agreement (BSD License)
3  *
4  * Point Cloud Library (PCL) - www.pointclouds.org
5  * Copyright (c) 2009-2012, Willow Garage, Inc.
6  * Copyright (c) 2012-, Open Perception, Inc.
7  *
8  * All rights reserved.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  *
14  * * Redistributions of source code must retain the above copyright
15  * notice, this list of conditions and the following disclaimer.
16  * * Redistributions in binary form must reproduce the above
17  * copyright notice, this list of conditions and the following
18  * disclaimer in the documentation and/or other materials provided
19  * with the distribution.
20  * * Neither the name of the copyright holder(s) nor the names of its
21  * contributors may be used to endorse or promote products derived
22  * from this software without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
25  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
26  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
27  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
28  * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
29  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
30  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
31  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
32  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
34  * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35  * POSSIBILITY OF SUCH DAMAGE.
36  *
37  * $Id: sac_model_normal_sphere.hpp schrandt $
38  *
39  */
40 
41 #ifndef PCL_SAMPLE_CONSENSUS_IMPL_SAC_MODEL_NORMAL_SPHERE_H_
42 #define PCL_SAMPLE_CONSENSUS_IMPL_SAC_MODEL_NORMAL_SPHERE_H_
43 
44 #include <pcl/sample_consensus/sac_model_normal_sphere.h>
45 #include <pcl/common/common.h> // for getAngle3D
46 
47 //////////////////////////////////////////////////////////////////////////////////////////////////////////////////
48 template <typename PointT, typename PointNT> void
50  const Eigen::VectorXf &model_coefficients, const double threshold, Indices &inliers)
51 {
52  if (!normals_)
53  {
54  PCL_ERROR ("[pcl::SampleConsensusModelNormalSphere::selectWithinDistance] No input dataset containing normals was given! Use setInputNormals\n");
55  inliers.clear ();
56  return;
57  }
58 
59  // Check if the model is valid given the user constraints
60  if (!isModelValid (model_coefficients))
61  {
62  inliers.clear ();
63  return;
64  }
65 
66  // Obtain the sphere center
67  Eigen::Vector4f center = model_coefficients;
68  center[3] = 0.0f;
69 
70  inliers.clear ();
71  error_sqr_dists_.clear ();
72  inliers.reserve (indices_->size ());
73  error_sqr_dists_.reserve (indices_->size ());
74 
75  // Iterate through the 3d points and calculate the distances from them to the sphere
76  for (std::size_t i = 0; i < indices_->size (); ++i)
77  {
78  // Calculate the distance from the point to the sphere center as the difference between
79  // dist(point,sphere_origin) and sphere_radius
80  Eigen::Vector4f p ((*input_)[(*indices_)[i]].x,
81  (*input_)[(*indices_)[i]].y,
82  (*input_)[(*indices_)[i]].z,
83  0.0f);
84 
85  Eigen::Vector4f n_dir = p - center;
86  const double weighted_euclid_dist = (1.0 - normal_distance_weight_) * std::abs (n_dir.norm () - model_coefficients[3]);
87  if (weighted_euclid_dist > threshold) // Early termination: cannot be an inlier
88  continue;
89 
90  // Calculate the angular distance between the point normal and the sphere normal
91  Eigen::Vector4f n ((*normals_)[(*indices_)[i]].normal[0],
92  (*normals_)[(*indices_)[i]].normal[1],
93  (*normals_)[(*indices_)[i]].normal[2],
94  0.0f);
95  double d_normal = std::abs (getAngle3D (n, n_dir));
96  d_normal = (std::min) (d_normal, M_PI - d_normal);
97 
98  double distance = std::abs (normal_distance_weight_ * d_normal + weighted_euclid_dist);
99  if (distance < threshold)
100  {
101  // Returns the indices of the points whose distances are smaller than the threshold
102  inliers.push_back ((*indices_)[i]);
103  error_sqr_dists_.push_back (static_cast<double> (distance));
104  }
105  }
106 }
107 
108 //////////////////////////////////////////////////////////////////////////////////////////////////////////////////
109 template <typename PointT, typename PointNT> std::size_t
111  const Eigen::VectorXf &model_coefficients, const double threshold) const
112 {
113  if (!normals_)
114  {
115  PCL_ERROR ("[pcl::SampleConsensusModelNormalSphere::getDistancesToModel] No input dataset containing normals was given! Use setInputNormals\n");
116  return (0);
117  }
118 
119  // Check if the model is valid given the user constraints
120  if (!isModelValid (model_coefficients))
121  return(0);
122 
123 
124  // Obtain the sphere centroid
125  Eigen::Vector4f center = model_coefficients;
126  center[3] = 0.0f;
127 
128  std::size_t nr_p = 0;
129 
130  // Iterate through the 3d points and calculate the distances from them to the sphere
131  for (std::size_t i = 0; i < indices_->size (); ++i)
132  {
133  // Calculate the distance from the point to the sphere centroid as the difference between
134  // dist(point,sphere_origin) and sphere_radius
135  Eigen::Vector4f p ((*input_)[(*indices_)[i]].x,
136  (*input_)[(*indices_)[i]].y,
137  (*input_)[(*indices_)[i]].z,
138  0.0f);
139 
140  Eigen::Vector4f n_dir = (p-center);
141  const double weighted_euclid_dist = (1.0 - normal_distance_weight_) * std::abs (n_dir.norm () - model_coefficients[3]);
142  if (weighted_euclid_dist > threshold) // Early termination: cannot be an inlier
143  continue;
144 
145  // Calculate the angular distance between the point normal and the sphere normal
146  Eigen::Vector4f n ((*normals_)[(*indices_)[i]].normal[0],
147  (*normals_)[(*indices_)[i]].normal[1],
148  (*normals_)[(*indices_)[i]].normal[2],
149  0.0f);
150  double d_normal = std::abs (getAngle3D (n, n_dir));
151  d_normal = (std::min) (d_normal, M_PI - d_normal);
152 
153  if (std::abs (normal_distance_weight_ * d_normal + weighted_euclid_dist) < threshold)
154  nr_p++;
155  }
156  return (nr_p);
157 }
158 
159 //////////////////////////////////////////////////////////////////////////////////////////////////////////////////
160 template <typename PointT, typename PointNT> void
162  const Eigen::VectorXf &model_coefficients, std::vector<double> &distances) const
163 {
164  if (!normals_)
165  {
166  PCL_ERROR ("[pcl::SampleConsensusModelNormalSphere::getDistancesToModel] No input dataset containing normals was given! Use setInputNormals\n");
167  return;
168  }
169 
170  // Check if the model is valid given the user constraints
171  if (!isModelValid (model_coefficients))
172  {
173  distances.clear ();
174  return;
175  }
176 
177  // Obtain the sphere centroid
178  Eigen::Vector4f center = model_coefficients;
179  center[3] = 0.0f;
180 
181  distances.resize (indices_->size ());
182 
183  // Iterate through the 3d points and calculate the distances from them to the sphere
184  for (std::size_t i = 0; i < indices_->size (); ++i)
185  {
186  // Calculate the distance from the point to the sphere as the difference between
187  // dist(point,sphere_origin) and sphere_radius
188  Eigen::Vector4f p ((*input_)[(*indices_)[i]].x,
189  (*input_)[(*indices_)[i]].y,
190  (*input_)[(*indices_)[i]].z,
191  0.0f);
192 
193  Eigen::Vector4f n_dir = (p-center);
194  const double weighted_euclid_dist = (1.0 - normal_distance_weight_) * std::abs (n_dir.norm () - model_coefficients[3]);
195 
196  // Calculate the angular distance between the point normal and the sphere normal
197  Eigen::Vector4f n ((*normals_)[(*indices_)[i]].normal[0],
198  (*normals_)[(*indices_)[i]].normal[1],
199  (*normals_)[(*indices_)[i]].normal[2],
200  0.0f);
201  double d_normal = std::abs (getAngle3D (n, n_dir));
202  d_normal = (std::min) (d_normal, M_PI - d_normal);
203 
204  distances[i] = std::abs (normal_distance_weight_ * d_normal + weighted_euclid_dist);
205  }
206 }
207 
208 #define PCL_INSTANTIATE_SampleConsensusModelNormalSphere(PointT, PointNT) template class PCL_EXPORTS pcl::SampleConsensusModelNormalSphere<PointT, PointNT>;
209 
210 #endif // PCL_SAMPLE_CONSENSUS_IMPL_SAC_MODEL_NORMAL_SPHERE_H_
211 
void selectWithinDistance(const Eigen::VectorXf &model_coefficients, const double threshold, Indices &inliers) override
Select all the points which respect the given model coefficients as inliers.
std::size_t countWithinDistance(const Eigen::VectorXf &model_coefficients, const double threshold) const override
Count all the points which respect the given model coefficients as inliers.
void getDistancesToModel(const Eigen::VectorXf &model_coefficients, std::vector< double > &distances) const override
Compute all distances from the cloud data to a given sphere model.
Define standard C methods and C++ classes that are common to all methods.
double getAngle3D(const Eigen::Vector4f &v1, const Eigen::Vector4f &v2, const bool in_degree=false)
Compute the smallest angle between two 3D vectors in radians (default) or degree.
Definition: common.hpp:47
float distance(const PointT &p1, const PointT &p2)
Definition: geometry.h:60
IndicesAllocator<> Indices
Type used for indices in PCL.
Definition: types.h:133
#define M_PI
Definition: pcl_macros.h:201