Point Cloud Library (PCL)  1.14.1-dev
region_growing_rgb.hpp
1 /*
2  * Software License Agreement (BSD License)
3  *
4  * Point Cloud Library (PCL) - www.pointclouds.org
5  *
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  *
12  * * Redistributions of source code must retain the above copyright
13  * notice, this list of conditions and the following disclaimer.
14  * * Redistributions in binary form must reproduce the above
15  * copyright notice, this list of conditions and the following
16  * disclaimer in the documentation and/or other materials provided
17  * with the distribution.
18  * * Neither the name of the copyright holder(s) nor the names of its
19  * contributors may be used to endorse or promote products derived
20  * from this software without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
23  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
24  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
25  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
26  * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
27  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
28  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
29  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
30  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
32  * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
33  * POSSIBILITY OF SUCH DAMAGE.
34  *
35  * Author : Sergey Ushakov
36  * Email : mine_all_mine@bk.ru
37  *
38  */
39 
40 #ifndef PCL_SEGMENTATION_REGION_GROWING_RGB_HPP_
41 #define PCL_SEGMENTATION_REGION_GROWING_RGB_HPP_
42 
43 #include <pcl/console/print.h> // for PCL_ERROR
44 #include <pcl/segmentation/region_growing_rgb.h>
45 #include <pcl/search/search.h>
46 #include <pcl/search/kdtree.h>
47 
48 #include <queue>
49 
50 //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
51 template <typename PointT, typename NormalT>
53  point_distances_ (0),
54  segment_neighbours_ (0),
55  segment_distances_ (0),
56  segment_labels_ (0)
57 {
58  normal_flag_ = false;
59  curvature_flag_ = false;
60  residual_flag_ = false;
62 }
63 
64 //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
65 template <typename PointT, typename NormalT>
67 {
68  point_distances_.clear ();
69  segment_neighbours_.clear ();
70  segment_distances_.clear ();
71  segment_labels_.clear ();
72 }
73 
74 //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
75 template <typename PointT, typename NormalT> float
77 {
78  return (powf (color_p2p_threshold_, 0.5f));
79 }
80 
81 //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
82 template <typename PointT, typename NormalT> void
84 {
85  color_p2p_threshold_ = thresh * thresh;
86 }
87 
88 //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
89 template <typename PointT, typename NormalT> float
91 {
92  return (powf (color_r2r_threshold_, 0.5f));
93 }
94 
95 //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
96 template <typename PointT, typename NormalT> void
98 {
99  color_r2r_threshold_ = thresh * thresh;
100 }
101 
102 //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
103 template <typename PointT, typename NormalT> float
105 {
106  return (powf (distance_threshold_, 0.5f));
107 }
108 
109 //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
110 template <typename PointT, typename NormalT> void
112 {
113  distance_threshold_ = thresh * thresh;
114 }
115 
116 //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
117 template <typename PointT, typename NormalT> unsigned int
119 {
120  return (region_neighbour_number_);
121 }
122 
123 //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
124 template <typename PointT, typename NormalT> void
126 {
127  region_neighbour_number_ = nghbr_number;
128 }
129 
130 //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
131 template <typename PointT, typename NormalT> bool
133 {
134  return (normal_flag_);
135 }
136 
137 //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
138 template <typename PointT, typename NormalT> void
140 {
141  normal_flag_ = value;
142 }
143 
144 //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
145 template <typename PointT, typename NormalT> void
147 {
148  curvature_flag_ = value;
149 }
150 
151 //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
152 template <typename PointT, typename NormalT> void
154 {
155  residual_flag_ = value;
156 }
157 
158 //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
159 template <typename PointT, typename NormalT> void
160 pcl::RegionGrowingRGB<PointT, NormalT>::extract (std::vector <pcl::PointIndices>& clusters)
161 {
162  clusters_.clear ();
163  clusters.clear ();
164  point_neighbours_.clear ();
165  point_labels_.clear ();
166  num_pts_in_segment_.clear ();
167  point_distances_.clear ();
168  segment_neighbours_.clear ();
169  segment_distances_.clear ();
170  segment_labels_.clear ();
171  number_of_segments_ = 0;
172 
173  bool segmentation_is_possible = initCompute ();
174  if ( !segmentation_is_possible )
175  {
176  deinitCompute ();
177  return;
178  }
179 
180  segmentation_is_possible = prepareForSegmentation ();
181  if ( !segmentation_is_possible )
182  {
183  deinitCompute ();
184  return;
185  }
186 
187  findPointNeighbours ();
188  applySmoothRegionGrowingAlgorithm ();
190 
191  findSegmentNeighbours ();
192  applyRegionMergingAlgorithm ();
193 
194  auto cluster_iter = clusters_.begin ();
195  while (cluster_iter != clusters_.end ())
196  {
197  if (cluster_iter->indices.size () < min_pts_per_cluster_ ||
198  cluster_iter->indices.size () > max_pts_per_cluster_)
199  {
200  cluster_iter = clusters_.erase (cluster_iter);
201  }
202  else
203  ++cluster_iter;
204  }
205 
206  clusters.reserve (clusters_.size ());
207  std::copy (clusters_.cbegin (), clusters_.cend (), std::back_inserter (clusters));
208 
209  deinitCompute ();
210 }
211 
212 //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
213 template <typename PointT, typename NormalT> bool
215 {
216  // if user forgot to pass point cloud or if it is empty
217  if ( input_->points.empty () )
218  return (false);
219 
220  // if normal/smoothness test is on then we need to check if all needed variables and parameters
221  // were correctly initialized
222  if (normal_flag_)
223  {
224  // if user forgot to pass normals or the sizes of point and normal cloud are different
225  if ( !normals_ || input_->size () != normals_->size () )
226  return (false);
227  }
228 
229  // if residual test is on then we need to check if all needed parameters were correctly initialized
230  if (residual_flag_)
231  {
232  if (residual_threshold_ <= 0.0f)
233  return (false);
234  }
235 
236  // if curvature test is on ...
237  // if (curvature_flag_)
238  // {
239  // in this case we do not need to check anything that related to it
240  // so we simply commented it
241  // }
242 
243  // here we check the parameters related to color-based segmentation
244  if ( region_neighbour_number_ == 0 || color_p2p_threshold_ < 0.0f || color_r2r_threshold_ < 0.0f || distance_threshold_ < 0.0f )
245  return (false);
246 
247  // from here we check those parameters that are always valuable
248  if (neighbour_number_ == 0)
249  return (false);
250 
251  // if user didn't set search method
252  if (!search_)
253  search_.reset (new pcl::search::KdTree<PointT>);
254 
255  if (indices_)
256  {
257  if (indices_->empty ())
258  PCL_ERROR ("[pcl::RegionGrowingRGB::prepareForSegmentation] Empty given indices!\n");
259  search_->setInputCloud (input_, indices_);
260  }
261  else
262  search_->setInputCloud (input_);
263 
264  return (true);
265 }
266 
267 //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
268 template <typename PointT, typename NormalT> void
270 {
271  pcl::Indices neighbours;
272  std::vector<float> distances;
273 
274  point_neighbours_.resize (input_->size (), neighbours);
275  point_distances_.resize (input_->size (), distances);
276 
277  for (const auto& point_index: (*indices_))
278  {
279  neighbours.clear ();
280  distances.clear ();
281  search_->nearestKSearch (point_index, region_neighbour_number_, neighbours, distances);
282  point_neighbours_[point_index].swap (neighbours);
283  point_distances_[point_index].swap (distances);
284  }
285 }
286 
287 //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
288 template <typename PointT, typename NormalT> void
290 {
291  pcl::Indices neighbours;
292  std::vector<float> distances;
293  segment_neighbours_.resize (number_of_segments_, neighbours);
294  segment_distances_.resize (number_of_segments_, distances);
295 
296  for (int i_seg = 0; i_seg < number_of_segments_; i_seg++)
297  {
298  pcl::Indices nghbrs;
299  std::vector<float> dist;
300  findRegionsKNN (i_seg, region_neighbour_number_, nghbrs, dist);
301  segment_neighbours_[i_seg].swap (nghbrs);
302  segment_distances_[i_seg].swap (dist);
303  }
304 }
305 
306 //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
307 template <typename PointT,typename NormalT> void
309 {
310  std::vector<float> distances;
311  float max_dist = std::numeric_limits<float>::max ();
312  distances.resize (clusters_.size (), max_dist);
313 
314  const auto number_of_points = num_pts_in_segment_[index];
315  //loop through every point in this segment and check neighbours
316  for (pcl::uindex_t i_point = 0; i_point < number_of_points; i_point++)
317  {
318  const auto point_index = clusters_[index].indices[i_point];
319  const auto number_of_neighbours = point_neighbours_[point_index].size ();
320  //loop through every neighbour of the current point, find out to which segment it belongs
321  //and if it belongs to neighbouring segment and is close enough then remember segment and its distance
322  for (std::size_t i_nghbr = 0; i_nghbr < number_of_neighbours; i_nghbr++)
323  {
324  // find segment
325  const pcl::index_t segment_index = point_labels_[ point_neighbours_[point_index][i_nghbr] ];
326 
327  if ( segment_index != index )
328  {
329  // try to push it to the queue
330  if (distances[segment_index] > point_distances_[point_index][i_nghbr])
331  distances[segment_index] = point_distances_[point_index][i_nghbr];
332  }
333  }
334  }// next point
335 
336  std::priority_queue<std::pair<float, int> > segment_neighbours;
337  for (int i_seg = 0; i_seg < number_of_segments_; i_seg++)
338  {
339  if (distances[i_seg] < max_dist)
340  {
341  segment_neighbours.emplace (distances[i_seg], i_seg);
342  if (segment_neighbours.size () > nghbr_number)
343  segment_neighbours.pop ();
344  }
345  }
346 
347  const std::size_t size = std::min<std::size_t> (segment_neighbours.size (), static_cast<std::size_t>(nghbr_number));
348  nghbrs.resize (size, 0);
349  dist.resize (size, 0);
350  pcl::uindex_t counter = 0;
351  while ( !segment_neighbours.empty () && counter < nghbr_number )
352  {
353  dist[counter] = segment_neighbours.top ().first;
354  nghbrs[counter] = segment_neighbours.top ().second;
355  segment_neighbours.pop ();
356  counter++;
357  }
358 }
359 
360 //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
361 template <typename PointT, typename NormalT> void
363 {
364  // calculate color of each segment
365  std::vector< std::vector<unsigned int> > segment_color;
366  std::vector<unsigned int> color;
367  color.resize (3, 0);
368  segment_color.resize (number_of_segments_, color);
369 
370  for (const auto& point_index : (*indices_))
371  {
372  int segment_index = point_labels_[point_index];
373  segment_color[segment_index][0] += (*input_)[point_index].r;
374  segment_color[segment_index][1] += (*input_)[point_index].g;
375  segment_color[segment_index][2] += (*input_)[point_index].b;
376  }
377  for (int i_seg = 0; i_seg < number_of_segments_; i_seg++)
378  {
379  segment_color[i_seg][0] = static_cast<unsigned int> (static_cast<float> (segment_color[i_seg][0]) / static_cast<float> (num_pts_in_segment_[i_seg]));
380  segment_color[i_seg][1] = static_cast<unsigned int> (static_cast<float> (segment_color[i_seg][1]) / static_cast<float> (num_pts_in_segment_[i_seg]));
381  segment_color[i_seg][2] = static_cast<unsigned int> (static_cast<float> (segment_color[i_seg][2]) / static_cast<float> (num_pts_in_segment_[i_seg]));
382  }
383 
384  // now it is time to find out if there are segments with a similar color
385  // and merge them together
386  std::vector<unsigned int> num_pts_in_homogeneous_region;
387  std::vector<int> num_seg_in_homogeneous_region;
388 
389  segment_labels_.resize (number_of_segments_, -1);
390 
391  float dist_thresh = distance_threshold_;
392  int homogeneous_region_number = 0;
393  for (int i_seg = 0; i_seg < number_of_segments_; i_seg++)
394  {
395  int curr_homogeneous_region = 0;
396  if (segment_labels_[i_seg] == -1)
397  {
398  segment_labels_[i_seg] = homogeneous_region_number;
399  curr_homogeneous_region = homogeneous_region_number;
400  num_pts_in_homogeneous_region.push_back (num_pts_in_segment_[i_seg]);
401  num_seg_in_homogeneous_region.push_back (1);
402  homogeneous_region_number++;
403  }
404  else
405  curr_homogeneous_region = segment_labels_[i_seg];
406 
407  unsigned int i_nghbr = 0;
408  while ( i_nghbr < region_neighbour_number_ && i_nghbr < segment_neighbours_[i_seg].size () )
409  {
410  int index = segment_neighbours_[i_seg][i_nghbr];
411  if (segment_distances_[i_seg][i_nghbr] > dist_thresh)
412  {
413  i_nghbr++;
414  continue;
415  }
416  if ( segment_labels_[index] == -1 )
417  {
418  float difference = calculateColorimetricalDifference (segment_color[i_seg], segment_color[index]);
419  if (difference < color_r2r_threshold_)
420  {
421  segment_labels_[index] = curr_homogeneous_region;
422  num_pts_in_homogeneous_region[curr_homogeneous_region] += num_pts_in_segment_[index];
423  num_seg_in_homogeneous_region[curr_homogeneous_region] += 1;
424  }
425  }
426  i_nghbr++;
427  }// next neighbour
428  }// next segment
429 
430  segment_color.clear ();
431  color.clear ();
432 
433  std::vector< std::vector<int> > final_segments;
434  std::vector<int> region;
435  final_segments.resize (homogeneous_region_number, region);
436  for (int i_reg = 0; i_reg < homogeneous_region_number; i_reg++)
437  {
438  final_segments[i_reg].resize (num_seg_in_homogeneous_region[i_reg], 0);
439  }
440 
441  std::vector<int> counter;
442  counter.resize (homogeneous_region_number, 0);
443  for (int i_seg = 0; i_seg < number_of_segments_; i_seg++)
444  {
445  int index = segment_labels_[i_seg];
446  final_segments[ index ][ counter[index] ] = i_seg;
447  counter[index] += 1;
448  }
449 
450  std::vector< std::vector< std::pair<float, pcl::index_t> > > region_neighbours;
451  findRegionNeighbours (region_neighbours, final_segments);
452 
453  int final_segment_number = homogeneous_region_number;
454  for (int i_reg = 0; i_reg < homogeneous_region_number; i_reg++)
455  {
456  if (num_pts_in_homogeneous_region[i_reg] < min_pts_per_cluster_)
457  {
458  if ( region_neighbours[i_reg].empty () )
459  continue;
460  int nearest_neighbour = region_neighbours[i_reg][0].second;
461  if ( region_neighbours[i_reg][0].first == std::numeric_limits<float>::max () )
462  continue;
463  int reg_index = segment_labels_[nearest_neighbour];
464  int num_seg_in_reg = num_seg_in_homogeneous_region[i_reg];
465  for (int i_seg = 0; i_seg < num_seg_in_reg; i_seg++)
466  {
467  int segment_index = final_segments[i_reg][i_seg];
468  final_segments[reg_index].push_back (segment_index);
469  segment_labels_[segment_index] = reg_index;
470  }
471  final_segments[i_reg].clear ();
472  num_pts_in_homogeneous_region[reg_index] += num_pts_in_homogeneous_region[i_reg];
473  num_pts_in_homogeneous_region[i_reg] = 0;
474  num_seg_in_homogeneous_region[reg_index] += num_seg_in_homogeneous_region[i_reg];
475  num_seg_in_homogeneous_region[i_reg] = 0;
476  final_segment_number -= 1;
477 
478  for (auto& nghbr : region_neighbours[reg_index])
479  {
480  if ( segment_labels_[ nghbr.second ] == reg_index )
481  {
482  nghbr.first = std::numeric_limits<float>::max ();
483  nghbr.second = 0;
484  }
485  }
486  for (const auto& nghbr : region_neighbours[i_reg])
487  {
488  if ( segment_labels_[ nghbr.second ] != reg_index )
489  {
490  region_neighbours[reg_index].push_back (nghbr);
491  }
492  }
493  region_neighbours[i_reg].clear ();
494  std::sort (region_neighbours[reg_index].begin (), region_neighbours[reg_index].end (), comparePair);
495  }
496  }
497 
498  assembleRegions (num_pts_in_homogeneous_region, static_cast<int> (num_pts_in_homogeneous_region.size ()));
499 
500  number_of_segments_ = final_segment_number;
501 }
502 
503 //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
504 template <typename PointT, typename NormalT> float
505 pcl::RegionGrowingRGB<PointT, NormalT>::calculateColorimetricalDifference (std::vector<unsigned int>& first_color, std::vector<unsigned int>& second_color) const
506 {
507  float difference = 0.0f;
508  difference += static_cast<float>((first_color[0] - second_color[0]) * (first_color[0] - second_color[0]));
509  difference += static_cast<float>((first_color[1] - second_color[1]) * (first_color[1] - second_color[1]));
510  difference += static_cast<float>((first_color[2] - second_color[2]) * (first_color[2] - second_color[2]));
511  return (difference);
512 }
513 
514 //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
515 template <typename PointT, typename NormalT> void
516 pcl::RegionGrowingRGB<PointT, NormalT>::findRegionNeighbours (std::vector< std::vector< std::pair<float, pcl::index_t> > >& neighbours_out, std::vector< std::vector<int> >& regions_in)
517 {
518  int region_number = static_cast<int> (regions_in.size ());
519  neighbours_out.clear ();
520  neighbours_out.resize (region_number);
521 
522  for (int i_reg = 0; i_reg < region_number; i_reg++)
523  {
524  neighbours_out[i_reg].reserve (regions_in[i_reg].size () * region_neighbour_number_);
525  for (const auto& curr_segment : regions_in[i_reg])
526  {
527  const std::size_t nghbr_number = segment_neighbours_[curr_segment].size ();
528  std::pair<float, pcl::index_t> pair;
529  for (std::size_t i_nghbr = 0; i_nghbr < nghbr_number; i_nghbr++)
530  {
531  const auto segment_index = segment_neighbours_[curr_segment][i_nghbr];
532  if ( segment_distances_[curr_segment][i_nghbr] == std::numeric_limits<float>::max () )
533  continue;
534  if (segment_labels_[segment_index] != i_reg)
535  {
536  pair.first = segment_distances_[curr_segment][i_nghbr];
537  pair.second = segment_index;
538  neighbours_out[i_reg].push_back (pair);
539  }
540  }// next neighbour
541  }// next segment
542  std::sort (neighbours_out[i_reg].begin (), neighbours_out[i_reg].end (), comparePair);
543  }// next homogeneous region
544 }
545 
546 //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
547 template <typename PointT, typename NormalT> void
548 pcl::RegionGrowingRGB<PointT, NormalT>::assembleRegions (std::vector<unsigned int>& num_pts_in_region, int num_regions)
549 {
550  clusters_.clear ();
551  pcl::PointIndices segment;
552  clusters_.resize (num_regions, segment);
553  for (int i_seg = 0; i_seg < num_regions; i_seg++)
554  {
555  clusters_[i_seg].indices.resize (num_pts_in_region[i_seg]);
556  }
557 
558  std::vector<int> counter;
559  counter.resize (num_regions, 0);
560  for (const auto& point_index : (*indices_))
561  {
562  int index = point_labels_[point_index];
563  index = segment_labels_[index];
564  clusters_[index].indices[ counter[index] ] = point_index;
565  counter[index] += 1;
566  }
567 
568  // now we need to erase empty regions
569  if (clusters_.empty ())
570  return;
571 
572  std::vector<pcl::PointIndices>::iterator itr1, itr2;
573  itr1 = clusters_.begin ();
574  itr2 = clusters_.end () - 1;
575 
576  while (itr1 < itr2)
577  {
578  while (!(itr1->indices.empty ()) && itr1 < itr2)
579  ++itr1;
580  while ( itr2->indices.empty () && itr1 < itr2)
581  --itr2;
582 
583  if (itr1 != itr2)
584  itr1->indices.swap (itr2->indices);
585  }
586 
587  if (itr2->indices.empty ())
588  clusters_.erase (itr2, clusters_.end ());
589 }
590 
591 //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
592 template <typename PointT, typename NormalT> bool
594 {
595  is_a_seed = true;
596 
597  // check the color difference
598  std::vector<unsigned int> point_color;
599  point_color.resize (3, 0);
600  std::vector<unsigned int> nghbr_color;
601  nghbr_color.resize (3, 0);
602  point_color[0] = (*input_)[point].r;
603  point_color[1] = (*input_)[point].g;
604  point_color[2] = (*input_)[point].b;
605  nghbr_color[0] = (*input_)[nghbr].r;
606  nghbr_color[1] = (*input_)[nghbr].g;
607  nghbr_color[2] = (*input_)[nghbr].b;
608  float difference = calculateColorimetricalDifference (point_color, nghbr_color);
609  if (difference > color_p2p_threshold_)
610  return (false);
611 
612  float cosine_threshold = std::cos (theta_threshold_);
613 
614  // check the angle between normals if needed
615  if (normal_flag_)
616  {
617  float data[4];
618  data[0] = (*input_)[point].data[0];
619  data[1] = (*input_)[point].data[1];
620  data[2] = (*input_)[point].data[2];
621  data[3] = (*input_)[point].data[3];
622 
623  Eigen::Map<Eigen::Vector3f> initial_point (static_cast<float*> (data));
624  Eigen::Map<Eigen::Vector3f> initial_normal (static_cast<float*> ((*normals_)[point].normal));
625  if (smooth_mode_flag_ == true)
626  {
627  Eigen::Map<Eigen::Vector3f> nghbr_normal (static_cast<float*> ((*normals_)[nghbr].normal));
628  float dot_product = std::abs (nghbr_normal.dot (initial_normal));
629  if (dot_product < cosine_threshold)
630  return (false);
631  }
632  else
633  {
634  Eigen::Map<Eigen::Vector3f> nghbr_normal (static_cast<float*> ((*normals_)[nghbr].normal));
635  Eigen::Map<Eigen::Vector3f> initial_seed_normal (static_cast<float*> ((*normals_)[initial_seed].normal));
636  float dot_product = std::abs (nghbr_normal.dot (initial_seed_normal));
637  if (dot_product < cosine_threshold)
638  return (false);
639  }
640  }
641 
642  // check the curvature if needed
643  if (curvature_flag_ && (*normals_)[nghbr].curvature > curvature_threshold_)
644  is_a_seed = false;
645 
646  // check the residual if needed
647  if (residual_flag_)
648  {
649  float data_p[4];
650  data_p[0] = (*input_)[point].data[0];
651  data_p[1] = (*input_)[point].data[1];
652  data_p[2] = (*input_)[point].data[2];
653  data_p[3] = (*input_)[point].data[3];
654  float data_n[4];
655  data_n[0] = (*input_)[nghbr].data[0];
656  data_n[1] = (*input_)[nghbr].data[1];
657  data_n[2] = (*input_)[nghbr].data[2];
658  data_n[3] = (*input_)[nghbr].data[3];
659  Eigen::Map<Eigen::Vector3f> nghbr_point (static_cast<float*> (data_n));
660  Eigen::Map<Eigen::Vector3f> initial_point (static_cast<float*> (data_p));
661  Eigen::Map<Eigen::Vector3f> initial_normal (static_cast<float*> ((*normals_)[point].normal));
662  float residual = std::abs (initial_normal.dot (initial_point - nghbr_point));
663  if (residual > residual_threshold_)
664  is_a_seed = false;
665  }
666 
667  return (true);
668 }
669 
670 //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
671 template <typename PointT, typename NormalT> void
673 {
674  cluster.indices.clear ();
675 
676  bool segmentation_is_possible = initCompute ();
677  if ( !segmentation_is_possible )
678  {
679  deinitCompute ();
680  return;
681  }
682 
683  // first of all we need to find out if this point belongs to cloud
684  bool point_was_found = false;
685  for (const auto& point : (*indices_))
686  if (point == index)
687  {
688  point_was_found = true;
689  break;
690  }
691 
692  if (point_was_found)
693  {
694  if (clusters_.empty ())
695  {
696  clusters_.clear ();
697  point_neighbours_.clear ();
698  point_labels_.clear ();
699  num_pts_in_segment_.clear ();
700  point_distances_.clear ();
701  segment_neighbours_.clear ();
702  segment_distances_.clear ();
703  segment_labels_.clear ();
704  number_of_segments_ = 0;
705 
706  segmentation_is_possible = prepareForSegmentation ();
707  if ( !segmentation_is_possible )
708  {
709  deinitCompute ();
710  return;
711  }
712 
713  findPointNeighbours ();
714  applySmoothRegionGrowingAlgorithm ();
716 
717  findSegmentNeighbours ();
718  applyRegionMergingAlgorithm ();
719  }
720  // if we have already made the segmentation, then find the segment
721  // to which this point belongs
722  for (const auto& i_segment : clusters_)
723  {
724  const auto it = std::find (i_segment.indices.cbegin (), i_segment.indices.cend (), index);
725  if (it != i_segment.indices.cend())
726  {
727  // if segment was found
728  cluster.indices.clear ();
729  cluster.indices.reserve (i_segment.indices.size ());
730  std::copy (i_segment.indices.begin (), i_segment.indices.end (), std::back_inserter (cluster.indices));
731  break;
732  }
733  }// next segment
734  }// end if point was found
735 
736  deinitCompute ();
737 }
738 
739 #endif // PCL_SEGMENTATION_REGION_GROWING_RGB_HPP_
bool curvature_flag_
If set to true then curvature test will be done during segmentation.
bool normal_flag_
If set to true then normal/smoothness test will be done during segmentation.
bool residual_flag_
If set to true then residual test will be done during segmentation.
pcl::uindex_t min_pts_per_cluster_
Stores the minimum number of points that a cluster needs to contain in order to be considered valid.
void assembleRegions()
This function simply assembles the regions from list of point labels.
void getSegmentFromPoint(index_t index, pcl::PointIndices &cluster) override
For a given point this function builds a segment to which it belongs and returns this segment.
void setDistanceThreshold(float thresh)
Allows to set distance threshold.
void setRegionColorThreshold(float thresh)
This method specifies the threshold value for color test between the regions.
float getPointColorThreshold() const
Returns the color threshold value used for testing if points belong to the same region.
bool prepareForSegmentation() override
This method simply checks if it is possible to execute the segmentation algorithm with the current se...
void findRegionNeighbours(std::vector< std::vector< std::pair< float, pcl::index_t > > > &neighbours_out, std::vector< std::vector< int > > &regions_in)
This method assembles the array containing neighbours of each homogeneous region.
void applyRegionMergingAlgorithm()
This function implements the merging algorithm described in the article "Color-based segmentation of ...
unsigned int getNumberOfRegionNeighbours() const
Returns the number of nearest neighbours used for searching K nearest segments.
void setCurvatureTestFlag(bool value) override
Allows to turn on/off the curvature test.
void extract(std::vector< pcl::PointIndices > &clusters) override
This method launches the segmentation algorithm and returns the clusters that were obtained during th...
void setNormalTestFlag(bool value)
Allows to turn on/off the smoothness test.
void setNumberOfRegionNeighbours(unsigned int nghbr_number)
This method allows to set the number of neighbours that is used for finding neighbouring segments.
float calculateColorimetricalDifference(std::vector< unsigned int > &first_color, std::vector< unsigned int > &second_color) const
This method calculates the colorimetrical difference between two points.
float getDistanceThreshold() const
Returns the distance threshold.
bool getNormalTestFlag() const
Returns the flag that signalize if the smoothness test is turned on/off.
void findRegionsKNN(pcl::index_t index, pcl::uindex_t nghbr_number, Indices &nghbrs, std::vector< float > &dist)
This method finds K nearest neighbours of the given segment.
RegionGrowingRGB()
Constructor that sets default values for member variables.
void setResidualTestFlag(bool value) override
Allows to turn on/off the residual test.
~RegionGrowingRGB() override
Destructor that frees memory.
void findPointNeighbours() override
This method finds KNN for each point and saves them to the array because the algorithm needs to find ...
float getRegionColorThreshold() const
Returns the color threshold value used for testing if regions can be merged.
void findSegmentNeighbours()
This method simply calls the findRegionsKNN for each segment and saves the results for later use.
void setPointColorThreshold(float thresh)
This method specifies the threshold value for color test between the points.
bool validatePoint(index_t initial_seed, index_t point, index_t nghbr, bool &is_a_seed) const override
This function is checking if the point with index 'nghbr' belongs to the segment.
search::KdTree is a wrapper class which inherits the pcl::KdTree class for performing search function...
Definition: kdtree.h:62
detail::int_type_t< detail::index_type_size, false > uindex_t
Type used for an unsigned index in PCL.
Definition: types.h:120
bool comparePair(std::pair< float, int > i, std::pair< float, int > j)
This function is used as a comparator for sorting.
detail::int_type_t< detail::index_type_size, detail::index_type_signed > index_t
Type used for an index in PCL.
Definition: types.h:112
IndicesAllocator<> Indices
Type used for indices in PCL.
Definition: types.h:133