39 #ifndef PCL_SEGMENTATION_MIN_CUT_SEGMENTATION_HPP_
40 #define PCL_SEGMENTATION_MIN_CUT_SEGMENTATION_HPP_
42 #include <boost/graph/boykov_kolmogorov_max_flow.hpp>
43 #include <pcl/segmentation/min_cut_segmentation.h>
44 #include <pcl/search/search.h>
45 #include <pcl/search/kdtree.h>
49 template <
typename Po
intT>
53 template <
typename Po
intT>
56 foreground_points_.clear ();
57 background_points_.clear ();
60 edge_marker_.clear ();
64 template <
typename Po
intT>
void
68 graph_is_valid_ =
false;
69 unary_potentials_are_valid_ =
false;
70 binary_potentials_are_valid_ =
false;
74 template <
typename Po
intT>
double
77 return (pow (1.0 / inverse_sigma_, 0.5));
81 template <
typename Po
intT>
void
86 inverse_sigma_ = 1.0 / (sigma * sigma);
87 binary_potentials_are_valid_ =
false;
92 template <
typename Po
intT>
double
95 return (pow (radius_, 0.5));
99 template <
typename Po
intT>
void
102 if (radius > epsilon_)
104 radius_ = radius * radius;
105 unary_potentials_are_valid_ =
false;
110 template <
typename Po
intT>
double
113 return (source_weight_);
117 template <
typename Po
intT>
void
120 if (weight > epsilon_)
122 source_weight_ = weight;
123 unary_potentials_are_valid_ =
false;
135 template <
typename Po
intT>
void
142 template <
typename Po
intT>
unsigned int
145 return (number_of_neighbours_);
149 template <
typename Po
intT>
void
152 if (number_of_neighbours_ != neighbour_number && neighbour_number != 0)
154 number_of_neighbours_ = neighbour_number;
155 graph_is_valid_ =
false;
156 unary_potentials_are_valid_ =
false;
157 binary_potentials_are_valid_ =
false;
162 template <
typename Po
intT> std::vector<PointT, Eigen::aligned_allocator<PointT> >
165 return (foreground_points_);
169 template <
typename Po
intT>
void
172 foreground_points_.clear ();
173 foreground_points_.insert(
174 foreground_points_.end(), foreground_points->
cbegin(), foreground_points->
cend());
176 unary_potentials_are_valid_ =
false;
180 template <
typename Po
intT> std::vector<PointT, Eigen::aligned_allocator<PointT> >
183 return (background_points_);
187 template <
typename Po
intT>
void
190 background_points_.clear ();
191 background_points_.insert(
192 background_points_.end(), background_points->
cbegin(), background_points->
cend());
194 unary_potentials_are_valid_ =
false;
198 template <
typename Po
intT>
void
203 bool segmentation_is_possible = initCompute ();
204 if ( !segmentation_is_possible )
210 if ( graph_is_valid_ && unary_potentials_are_valid_ && binary_potentials_are_valid_ )
212 clusters.reserve (clusters_.size ());
213 std::copy (clusters_.cbegin (), clusters_.cend (), std::back_inserter (clusters));
220 if ( !graph_is_valid_ )
222 bool success = buildGraph ();
228 graph_is_valid_ =
true;
229 unary_potentials_are_valid_ =
true;
230 binary_potentials_are_valid_ =
true;
233 if ( !unary_potentials_are_valid_ )
235 bool success = recalculateUnaryPotentials ();
241 unary_potentials_are_valid_ =
true;
244 if ( !binary_potentials_are_valid_ )
246 bool success = recalculateBinaryPotentials ();
252 binary_potentials_are_valid_ =
true;
256 ResidualCapacityMap residual_capacity = boost::get (boost::edge_residual_capacity, *graph_);
258 max_flow_ = boost::boykov_kolmogorov_max_flow (*graph_, source_, sink_);
260 assembleLabels (residual_capacity);
262 clusters.reserve (clusters_.size ());
263 std::copy (clusters_.cbegin (), clusters_.cend (), std::back_inserter (clusters));
269 template <
typename Po
intT>
double
283 template <
typename Po
intT>
bool
286 const auto number_of_points = input_->size ();
287 const auto number_of_indices = indices_->size ();
289 if (input_->points.empty () || number_of_points == 0 || foreground_points_.empty () ==
true )
295 graph_.reset (
new mGraph);
298 *capacity_ = boost::get (boost::edge_capacity, *graph_);
301 *reverse_edges_ = boost::get (boost::edge_reverse, *graph_);
305 vertices_.resize (number_of_points + 2, vertex_descriptor);
307 std::set<int> out_edges_marker;
308 edge_marker_.clear ();
309 edge_marker_.resize (number_of_points + 2, out_edges_marker);
311 for (std::size_t i_point = 0; i_point < number_of_points + 2; i_point++)
312 vertices_[i_point] = boost::add_vertex (*graph_);
314 source_ = vertices_[number_of_points];
315 sink_ = vertices_[number_of_points + 1];
317 for (
const auto& point_index : (*indices_))
319 double source_weight = 0.0;
320 double sink_weight = 0.0;
321 calculateUnaryPotential (point_index, source_weight, sink_weight);
322 addEdge (
static_cast<int> (source_), point_index, source_weight);
323 addEdge (point_index,
static_cast<int> (sink_), sink_weight);
327 std::vector<float> distances;
328 search_->setInputCloud (input_, indices_);
329 for (std::size_t i_point = 0; i_point < number_of_indices; i_point++)
331 index_t point_index = (*indices_)[i_point];
332 search_->nearestKSearch (i_point, number_of_neighbours_, neighbours, distances);
333 for (std::size_t i_nghbr = 1; i_nghbr < neighbours.size (); i_nghbr++)
335 double weight = calculateBinaryPotential (point_index, neighbours[i_nghbr]);
336 addEdge (point_index, neighbours[i_nghbr], weight);
337 addEdge (neighbours[i_nghbr], point_index, weight);
347 template <
typename Po
intT>
void
350 double min_dist_to_foreground = std::numeric_limits<double>::max ();
353 double initial_point[] = {0.0, 0.0};
355 initial_point[0] = (*input_)[point].x;
356 initial_point[1] = (*input_)[point].y;
358 for (
const auto& fg_point : foreground_points_)
361 dist += (fg_point.x - initial_point[0]) * (fg_point.x - initial_point[0]);
362 dist += (fg_point.y - initial_point[1]) * (fg_point.y - initial_point[1]);
363 if (min_dist_to_foreground > dist)
365 min_dist_to_foreground = dist;
369 sink_weight = pow (min_dist_to_foreground / radius_, 0.5);
371 source_weight = source_weight_;
403 template <
typename Po
intT>
bool
406 auto iter_out = edge_marker_[source].find (target);
407 if ( iter_out != edge_marker_[source].end () )
412 bool edge_was_added, reverse_edge_was_added;
414 boost::tie (edge, edge_was_added) = boost::add_edge ( vertices_[source], vertices_[target], *graph_ );
415 boost::tie (reverse_edge, reverse_edge_was_added) = boost::add_edge ( vertices_[target], vertices_[source], *graph_ );
416 if ( !edge_was_added || !reverse_edge_was_added )
419 (*capacity_)[edge] = weight;
420 (*capacity_)[reverse_edge] = 0.0;
421 (*reverse_edges_)[edge] = reverse_edge;
422 (*reverse_edges_)[reverse_edge] = edge;
423 edge_marker_[source].insert (target);
429 template <
typename Po
intT>
double
434 distance += ((*input_)[source].x - (*input_)[target].x) * ((*input_)[source].x - (*input_)[target].x);
435 distance += ((*input_)[source].y - (*input_)[target].y) * ((*input_)[source].y - (*input_)[target].y);
436 distance += ((*input_)[source].z - (*input_)[target].z) * ((*input_)[source].z - (*input_)[target].z);
444 template <
typename Po
intT>
bool
449 std::pair<EdgeDescriptor, bool> sink_edge;
451 for (boost::tie (src_edge_iter, src_edge_end) = boost::out_edges (source_, *graph_); src_edge_iter != src_edge_end; ++src_edge_iter)
453 double source_weight = 0.0;
454 double sink_weight = 0.0;
455 sink_edge.second =
false;
456 calculateUnaryPotential (
static_cast<int> (boost::target (*src_edge_iter, *graph_)), source_weight, sink_weight);
457 sink_edge = boost::lookup_edge (boost::target (*src_edge_iter, *graph_), sink_, *graph_);
458 if (!sink_edge.second)
461 (*capacity_)[*src_edge_iter] = source_weight;
462 (*capacity_)[sink_edge.first] = sink_weight;
469 template <
typename Po
intT>
bool
477 std::vector< std::set<VertexDescriptor> > edge_marker;
478 std::set<VertexDescriptor> out_edges_marker;
479 edge_marker.clear ();
480 edge_marker.resize (input_->size () + 2, out_edges_marker);
482 for (boost::tie (vertex_iter, vertex_end) = boost::vertices (*graph_); vertex_iter != vertex_end; ++vertex_iter)
485 if (source_vertex == source_ || source_vertex == sink_)
487 for (boost::tie (edge_iter, edge_end) = boost::out_edges (source_vertex, *graph_); edge_iter != edge_end; ++edge_iter)
491 if ((*capacity_)[reverse_edge] != 0.0)
496 auto iter_out = edge_marker[
static_cast<int> (source_vertex)].find (target_vertex);
497 if ( iter_out != edge_marker[
static_cast<int> (source_vertex)].end () )
500 if (target_vertex != source_ && target_vertex != sink_)
503 double weight = calculateBinaryPotential (
static_cast<int> (target_vertex),
static_cast<int> (source_vertex));
504 (*capacity_)[*edge_iter] = weight;
505 edge_marker[
static_cast<int> (source_vertex)].insert (target_vertex);
514 template <
typename Po
intT>
void
517 std::vector<int> labels;
518 labels.resize (input_->size (), 0);
519 for (
const auto& i_point : (*indices_))
525 clusters_.resize (2, segment);
528 for ( boost::tie (edge_iter, edge_end) = boost::out_edges (source_, *graph_); edge_iter != edge_end; ++edge_iter )
530 if (labels[edge_iter->m_target] == 1)
532 if (residual_capacity[*edge_iter] > epsilon_)
533 clusters_[1].
indices.push_back (
static_cast<int> (edge_iter->m_target));
535 clusters_[0].indices.push_back (
static_cast<int> (edge_iter->m_target));
546 if (!clusters_.empty ())
549 unsigned char foreground_color[3] = {255, 255, 255};
550 unsigned char background_color[3] = {255, 0, 0};
551 colored_cloud->
width = (clusters_[0].indices.size () + clusters_[1].indices.size ());
552 colored_cloud->
height = 1;
553 colored_cloud->
is_dense = input_->is_dense;
556 for (
const auto& point_index : (clusters_[0].indices))
558 point.x = *((*input_)[point_index].data);
559 point.y = *((*input_)[point_index].data + 1);
560 point.z = *((*input_)[point_index].data + 2);
561 point.r = background_color[0];
562 point.g = background_color[1];
563 point.b = background_color[2];
564 colored_cloud->
points.push_back (point);
567 for (
const auto& point_index : (clusters_[1].indices))
569 point.x = *((*input_)[point_index].data);
570 point.y = *((*input_)[point_index].data + 1);
571 point.z = *((*input_)[point_index].data + 2);
572 point.r = foreground_color[0];
573 point.g = foreground_color[1];
574 point.b = foreground_color[2];
575 colored_cloud->
points.push_back (point);
579 return (colored_cloud);
582 #define PCL_INSTANTIATE_MinCutSegmentation(T) template class PCL_EXPORTS pcl::MinCutSegmentation<T>;
KdTreePtr getSearchMethod() const
Returns search method that is used for finding KNN.
void calculateUnaryPotential(int point, double &source_weight, double &sink_weight) const
Returns unary potential(data cost) for the given point index.
void setSigma(double sigma)
Allows to set the normalization value for the binary potentials as described in the article.
double getSigma() const
Returns normalization value for binary potentials.
MinCutSegmentation()
Constructor that sets default values for member variables.
void setRadius(double radius)
Allows to set the radius to the background.
void extract(std::vector< pcl::PointIndices > &clusters)
This method launches the segmentation algorithm and returns the clusters that were obtained during th...
double getSourceWeight() const
Returns weight that every edge from the source point has.
mGraphPtr getGraph() const
Returns the graph that was build for finding the minimum cut.
void setInputCloud(const PointCloudConstPtr &cloud) override
This method simply sets the input point cloud.
void setSourceWeight(double weight)
Allows to set weight for source edges.
~MinCutSegmentation() override
Destructor that frees memory.
void setBackgroundPoints(typename pcl::PointCloud< PointT >::Ptr background_points)
Allows to specify points which are known to be the points of the background.
boost::graph_traits< mGraph >::out_edge_iterator OutEdgeIterator
unsigned int getNumberOfNeighbours() const
Returns the number of neighbours to find.
bool buildGraph()
This method simply builds the graph that will be used during the segmentation.
boost::property_map< mGraph, boost::edge_capacity_t >::type CapacityMap
double getMaxFlow() const
Returns that flow value that was calculated during the segmentation.
bool recalculateUnaryPotentials()
This method recalculates unary potentials(data cost) if some changes were made, instead of creating n...
boost::property_map< mGraph, boost::edge_reverse_t >::type ReverseEdgeMap
shared_ptr< mGraph > mGraphPtr
void setSearchMethod(const KdTreePtr &tree)
Allows to set search method for finding KNN.
double getRadius() const
Returns radius to the background.
double calculateBinaryPotential(int source, int target) const
Returns the binary potential(smooth cost) for the given indices of points.
bool recalculateBinaryPotentials()
This method recalculates binary potentials(smooth cost) if some changes were made,...
std::vector< PointT, Eigen::aligned_allocator< PointT > > getBackgroundPoints() const
Returns the points that must belong to background.
bool addEdge(int source, int target, double weight)
This method simply adds the edge from the source point to the target point with a given weight.
Traits::vertex_descriptor VertexDescriptor
void setNumberOfNeighbours(unsigned int neighbour_number)
Allows to set the number of neighbours to find.
boost::graph_traits< mGraph >::vertex_iterator VertexIterator
typename KdTree::Ptr KdTreePtr
std::vector< PointT, Eigen::aligned_allocator< PointT > > getForegroundPoints() const
Returns the points that must belong to foreground.
boost::adjacency_list< boost::vecS, boost::vecS, boost::directedS, boost::property< boost::vertex_name_t, std::string, boost::property< boost::vertex_index_t, long, boost::property< boost::vertex_color_t, boost::default_color_type, boost::property< boost::vertex_distance_t, long, boost::property< boost::vertex_predecessor_t, Traits::edge_descriptor > > > > >, boost::property< boost::edge_capacity_t, double, boost::property< boost::edge_residual_capacity_t, double, boost::property< boost::edge_reverse_t, Traits::edge_descriptor > > > > mGraph
boost::graph_traits< mGraph >::edge_descriptor EdgeDescriptor
boost::property_map< mGraph, boost::edge_residual_capacity_t >::type ResidualCapacityMap
void setForegroundPoints(typename pcl::PointCloud< PointT >::Ptr foreground_points)
Allows to specify points which are known to be the points of the object.
pcl::PointCloud< pcl::PointXYZRGB >::Ptr getColoredCloud()
Returns the colored cloud.
void assembleLabels(ResidualCapacityMap &residual_capacity)
This method analyzes the residual network and assigns a label to every point in the cloud.
typename PointCloud::ConstPtr PointCloudConstPtr
const_iterator cbegin() const noexcept
const_iterator cend() const noexcept
bool is_dense
True if no points are invalid (e.g., have NaN or Inf values in any of their floating point fields).
std::uint32_t width
The point cloud width (if organized as an image-structure).
std::uint32_t height
The point cloud height (if organized as an image-structure).
shared_ptr< PointCloud< PointT > > Ptr
std::vector< PointT, Eigen::aligned_allocator< PointT > > points
The point data.
search::KdTree is a wrapper class which inherits the pcl::KdTree class for performing search function...
float distance(const PointT &p1, const PointT &p2)
detail::int_type_t< detail::index_type_size, detail::index_type_signed > index_t
Type used for an index in PCL.
IndicesAllocator<> Indices
Type used for indices in PCL.
A point structure representing Euclidean xyz coordinates, and the RGB color.