39 #ifndef PCL_FEATURES_IMPL_GASD_H_
40 #define PCL_FEATURES_IMPL_GASD_H_
42 #include <pcl/features/gasd.h>
44 #include <pcl/common/transforms.h>
49 template <
typename Po
intInT,
typename Po
intOutT>
void
54 output.width = output.height = 0;
63 output.header = surface_->header;
64 output.is_dense = surface_->is_dense;
67 computeFeature (output);
73 template <
typename Po
intInT,
typename Po
intOutT>
void
76 Eigen::Vector4f centroid;
77 Eigen::Matrix3f covariance_matrix;
82 PCL_ERROR(
"[pcl::GASDEstimation::computeAlignmentTransform] Surface cloud or indices are empty!\n");
86 Eigen::Matrix3f eigenvectors;
87 Eigen::Vector3f eigenvalues;
90 pcl::eigen33 (covariance_matrix, eigenvectors, eigenvalues);
93 Eigen::Vector3f z_axis = eigenvectors.col (0);
96 if (z_axis.dot (view_direction_) > 0)
102 const Eigen::Vector3f x_axis = eigenvectors.col (2);
105 const Eigen::Vector3f y_axis = z_axis.cross (x_axis);
107 const Eigen::Vector3f centroid_xyz = centroid.head<3> ();
110 transform_ << x_axis.transpose (), -x_axis.dot (centroid_xyz),
111 y_axis.transpose (), -y_axis.dot (centroid_xyz),
112 z_axis.transpose (), -z_axis.dot (centroid_xyz),
113 0.0f, 0.0f, 0.0f, 1.0f;
117 template <
typename Po
intInT,
typename Po
intOutT>
void
119 const float max_coord,
120 const std::size_t half_grid_size,
123 const float hist_incr,
124 std::vector<Eigen::VectorXf> &hists)
126 const std::size_t grid_size = half_grid_size * 2;
129 const Eigen::Vector3f scaled ( (p[0] / max_coord) * half_grid_size, (p[1] / max_coord) * half_grid_size, (p[2] / max_coord) * half_grid_size);
132 Eigen::Vector4f coords (scaled[0] + half_grid_size, scaled[1] + half_grid_size, scaled[2] + half_grid_size, hbin);
137 coords -= Eigen::Vector4f (0.5f, 0.5f, 0.5f, 0.5f);
141 const Eigen::Vector4f bins (std::floor (coords[0]), std::floor (coords[1]), std::floor (coords[2]), std::floor (coords[3]));
144 const std::size_t grid_idx = ( (bins[0] + 1) * (grid_size + 2) + bins[1] + 1) * (grid_size + 2) + bins[2] + 1;
145 const std::size_t h_idx = bins[3] + 1;
150 hists[grid_idx][h_idx] += hist_incr;
155 coords -= Eigen::Vector4f (bins[0], bins[1], bins[2], 0.0f);
157 const float v_x1 = hist_incr * coords[0];
158 const float v_x0 = hist_incr - v_x1;
160 const float v_xy11 = v_x1 * coords[1];
161 const float v_xy10 = v_x1 - v_xy11;
162 const float v_xy01 = v_x0 * coords[1];
163 const float v_xy00 = v_x0 - v_xy01;
165 const float v_xyz111 = v_xy11 * coords[2];
166 const float v_xyz110 = v_xy11 - v_xyz111;
167 const float v_xyz101 = v_xy10 * coords[2];
168 const float v_xyz100 = v_xy10 - v_xyz101;
169 const float v_xyz011 = v_xy01 * coords[2];
170 const float v_xyz010 = v_xy01 - v_xyz011;
171 const float v_xyz001 = v_xy00 * coords[2];
172 const float v_xyz000 = v_xy00 - v_xyz001;
177 hists[grid_idx][h_idx] += v_xyz000;
178 hists[grid_idx + 1][h_idx] += v_xyz001;
179 hists[grid_idx + (grid_size + 2)][h_idx] += v_xyz010;
180 hists[grid_idx + (grid_size + 3)][h_idx] += v_xyz011;
181 hists[grid_idx + (grid_size + 2) * (grid_size + 2)][h_idx] += v_xyz100;
182 hists[grid_idx + (grid_size + 2) * (grid_size + 2) + 1][h_idx] += v_xyz101;
183 hists[grid_idx + (grid_size + 3) * (grid_size + 2)][h_idx] += v_xyz110;
184 hists[grid_idx + (grid_size + 3) * (grid_size + 2) + 1][h_idx] += v_xyz111;
189 coords[3] -= bins[3];
191 const float v_xyzh1111 = v_xyz111 * coords[3];
192 const float v_xyzh1110 = v_xyz111 - v_xyzh1111;
193 const float v_xyzh1101 = v_xyz110 * coords[3];
194 const float v_xyzh1100 = v_xyz110 - v_xyzh1101;
195 const float v_xyzh1011 = v_xyz101 * coords[3];
196 const float v_xyzh1010 = v_xyz101 - v_xyzh1011;
197 const float v_xyzh1001 = v_xyz100 * coords[3];
198 const float v_xyzh1000 = v_xyz100 - v_xyzh1001;
199 const float v_xyzh0111 = v_xyz011 * coords[3];
200 const float v_xyzh0110 = v_xyz011 - v_xyzh0111;
201 const float v_xyzh0101 = v_xyz010 * coords[3];
202 const float v_xyzh0100 = v_xyz010 - v_xyzh0101;
203 const float v_xyzh0011 = v_xyz001 * coords[3];
204 const float v_xyzh0010 = v_xyz001 - v_xyzh0011;
205 const float v_xyzh0001 = v_xyz000 * coords[3];
206 const float v_xyzh0000 = v_xyz000 - v_xyzh0001;
208 hists[grid_idx][h_idx] += v_xyzh0000;
209 hists[grid_idx][h_idx + 1] += v_xyzh0001;
210 hists[grid_idx + 1][h_idx] += v_xyzh0010;
211 hists[grid_idx + 1][h_idx + 1] += v_xyzh0011;
212 hists[grid_idx + (grid_size + 2)][h_idx] += v_xyzh0100;
213 hists[grid_idx + (grid_size + 2)][h_idx + 1] += v_xyzh0101;
214 hists[grid_idx + (grid_size + 3)][h_idx] += v_xyzh0110;
215 hists[grid_idx + (grid_size + 3)][h_idx + 1] += v_xyzh0111;
216 hists[grid_idx + (grid_size + 2) * (grid_size + 2)][h_idx] += v_xyzh1000;
217 hists[grid_idx + (grid_size + 2) * (grid_size + 2)][h_idx + 1] += v_xyzh1001;
218 hists[grid_idx + (grid_size + 2) * (grid_size + 2) + 1][h_idx] += v_xyzh1010;
219 hists[grid_idx + (grid_size + 2) * (grid_size + 2) + 1][h_idx + 1] += v_xyzh1011;
220 hists[grid_idx + (grid_size + 3) * (grid_size + 2)][h_idx] += v_xyzh1100;
221 hists[grid_idx + (grid_size + 3) * (grid_size + 2)][h_idx + 1] += v_xyzh1101;
222 hists[grid_idx + (grid_size + 3) * (grid_size + 2) + 1][h_idx] += v_xyzh1110;
223 hists[grid_idx + (grid_size + 3) * (grid_size + 2) + 1][h_idx + 1] += v_xyzh1111;
229 template <
typename Po
intInT,
typename Po
intOutT>
void
231 const std::size_t hists_size,
232 const std::vector<Eigen::VectorXf> &hists,
233 PointCloudOut &output,
236 for (std::size_t i = 0; i < grid_size; ++i)
238 for (std::size_t j = 0; j < grid_size; ++j)
240 for (std::size_t k = 0; k < grid_size; ++k)
242 const std::size_t idx = ( (i + 1) * (grid_size + 2) + (j + 1)) * (grid_size + 2) + (k + 1);
244 std::copy (hists[idx].data () + 1, hists[idx].data () + 1 + hists_size, output[0].histogram + pos);
252 template <
typename Po
intInT,
typename Po
intOutT>
void
256 computeAlignmentTransform ();
261 const std::size_t shape_grid_size = shape_half_grid_size_ * 2;
264 std::vector<Eigen::VectorXf> shape_hists ((shape_grid_size + 2) * (shape_grid_size + 2) * (shape_grid_size + 2),
265 Eigen::VectorXf::Zero (shape_hists_size_ + 2));
267 Eigen::Vector4f centroid_p = Eigen::Vector4f::Zero ();
270 Eigen::Vector4f far_pt;
273 const float distance_normalization_factor = (centroid_p - far_pt).norm ();
276 Eigen::Vector4f min_pt, max_pt;
279 max_coord_ = std::max (min_pt.head<3> ().cwiseAbs ().maxCoeff (), max_pt.head<3> ().cwiseAbs ().maxCoeff ());
282 hist_incr_ = 100.0f /
static_cast<float> (shape_samples_.size () - 1);
285 for (
const auto& sample: shape_samples_)
288 const Eigen::Vector4f p (sample.x, sample.y, sample.z, 0.0f);
289 const float d = p.norm ();
291 const float shape_grid_step = distance_normalization_factor / shape_half_grid_size_;
294 const float dist_hist_val = std::modf(d / shape_grid_step, &integral);
296 const float dbin = dist_hist_val * shape_hists_size_;
299 addSampleToHistograms (p, max_coord_, shape_half_grid_size_, shape_interp_, dbin, hist_incr_, shape_hists);
305 copyShapeHistogramsToOutput (shape_grid_size, shape_hists_size_, shape_hists, output, pos_);
308 std::fill (output[0].histogram + pos_, output[0].histogram + output[0].descriptorSize (), 0.0f);
312 template <
typename Po
intInT,
typename Po
intOutT>
void
314 const std::size_t hists_size,
315 std::vector<Eigen::VectorXf> &hists,
316 PointCloudOut &output,
319 for (std::size_t i = 0; i < grid_size; ++i)
321 for (std::size_t j = 0; j < grid_size; ++j)
323 for (std::size_t k = 0; k < grid_size; ++k)
325 const std::size_t idx = ( (i + 1) * (grid_size + 2) + (j + 1)) * (grid_size + 2) + (k + 1);
327 hists[idx][1] += hists[idx][hists_size + 1];
328 hists[idx][hists_size] += hists[idx][0];
330 std::copy (hists[idx].data () + 1, hists[idx].data () + 1 + hists_size, output[0].histogram + pos);
338 template <
typename Po
intInT,
typename Po
intOutT>
void
342 GASDEstimation<PointInT, PointOutT>::computeFeature (output);
344 const std::size_t color_grid_size = color_half_grid_size_ * 2;
347 std::vector<Eigen::VectorXf> color_hists ((color_grid_size + 2) * (color_grid_size + 2) * (color_grid_size + 2),
348 Eigen::VectorXf::Zero (color_hists_size_ + 2));
351 for (
const auto& sample: shape_samples_)
354 const Eigen::Vector4f p (sample.x, sample.y, sample.z, 0.0f);
359 const unsigned char max = std::max (sample.r, std::max (sample.g, sample.b));
360 const unsigned char min = std::min (sample.r, std::min (sample.g, sample.b));
362 const float diff_inv = 1.f /
static_cast <float> (max - min);
364 if (std::isfinite (diff_inv))
368 hue = 60.f * (
static_cast <float> (sample.g - sample.b) * diff_inv);
370 else if (max == sample.g)
372 hue = 60.f * (2.f +
static_cast <float> (sample.b - sample.r) * diff_inv);
376 hue = 60.f * (4.f +
static_cast <float> (sample.r - sample.g) * diff_inv);
386 const float hbin = (hue / 360) * color_hists_size_;
389 GASDEstimation<PointInT, PointOutT>::addSampleToHistograms (p, max_coord_, color_half_grid_size_, color_interp_, hbin, hist_incr_, color_hists);
393 copyColorHistogramsToOutput (color_grid_size, color_hists_size_, color_hists, output, pos_);
396 std::fill (output[0].histogram + pos_, output[0].histogram + output[0].descriptorSize (), 0.0f);
399 #define PCL_INSTANTIATE_GASDEstimation(InT, OutT) template class PCL_EXPORTS pcl::GASDEstimation<InT, OutT>;
400 #define PCL_INSTANTIATE_GASDColorEstimation(InT, OutT) template class PCL_EXPORTS pcl::GASDColorEstimation<InT, OutT>;
Feature represents the base feature class.
GASDColorEstimation estimates the Globally Aligned Spatial Distribution (GASD) descriptor for a given...
GASDEstimation estimates the Globally Aligned Spatial Distribution (GASD) descriptor for a given poin...
void computeFeature(PointCloudOut &output) override
Estimate GASD descriptor.
void compute(PointCloudOut &output)
Overloaded computed method from pcl::Feature.
void addSampleToHistograms(const Eigen::Vector4f &p, const float max_coord, const std::size_t half_grid_size, const HistogramInterpolationMethod interp, const float hbin, const float hist_incr, std::vector< Eigen::VectorXf > &hists)
add a sample to its respective histogram, optionally performing interpolation.
Define standard C methods and C++ classes that are common to all methods.
void getMaxDistance(const pcl::PointCloud< PointT > &cloud, const Eigen::Vector4f &pivot_pt, Eigen::Vector4f &max_pt)
Get the point at maximum distance from a given point and a given pointcloud.
void getMinMax3D(const pcl::PointCloud< PointT > &cloud, PointT &min_pt, PointT &max_pt)
Get the minimum and maximum values on each of the 3 (x-y-z) dimensions in a given pointcloud.
unsigned int computeCovarianceMatrix(const pcl::PointCloud< PointT > &cloud, const Eigen::Matrix< Scalar, 4, 1 > ¢roid, Eigen::Matrix< Scalar, 3, 3 > &covariance_matrix)
Compute the 3x3 covariance matrix of a given set of points.
void transformPointCloud(const pcl::PointCloud< PointT > &cloud_in, pcl::PointCloud< PointT > &cloud_out, const Eigen::Matrix< Scalar, 4, 4 > &transform, bool copy_all_fields)
Apply a rigid transform defined by a 4x4 matrix.
void eigen33(const Matrix &mat, typename Matrix::Scalar &eigenvalue, Vector &eigenvector)
determines the eigenvector and eigenvalue of the smallest eigenvalue of the symmetric positive semi d...
unsigned int compute3DCentroid(ConstCloudIterator< PointT > &cloud_iterator, Eigen::Matrix< Scalar, 4, 1 > ¢roid)
Compute the 3D (X-Y-Z) centroid of a set of points and return it as a 3D vector.
HistogramInterpolationMethod
Different histogram interpolation methods.
@ INTERP_NONE
no interpolation
@ INTERP_TRILINEAR
trilinear interpolation