41 #ifndef PCL_FEATURES_IMPL_CPPF_H_
42 #define PCL_FEATURES_IMPL_CPPF_H_
44 #include <pcl/features/cppf.h>
45 #include <pcl/search/kdtree.h>
48 template <
typename Po
intInT,
typename Po
intNT,
typename Po
intOutT>
60 template <
typename Po
intInT,
typename Po
intNT,
typename Po
intOutT>
void
64 output.points.clear ();
65 output.points.reserve (indices_->size () * input_->size ());
66 output.is_dense =
true;
68 for (
const auto& i: *indices_)
70 for (std::size_t j = 0 ; j < input_->size (); ++j)
75 if (
static_cast<std::size_t
>(i) != j)
79 (*normals_)[i].getNormalVector4fMap (),
80 (*input_)[i].getRGBVector4i (),
81 (*input_)[j].getVector4fMap (),
82 (*normals_)[j].getNormalVector4fMap (),
83 (*input_)[j].getRGBVector4i (),
84 p.f1, p.f2, p.f3, p.f4, p.f5, p.f6, p.f7, p.f8, p.f9, p.f10))
87 Eigen::Vector3f model_reference_point = (*input_)[i].getVector3fMap (),
88 model_reference_normal = (*normals_)[i].getNormalVector3fMap (),
89 model_point = (*input_)[j].getVector3fMap ();
90 Eigen::AngleAxisf rotation_mg (std::acos (model_reference_normal.dot (Eigen::Vector3f::UnitX ())),
91 model_reference_normal.cross (Eigen::Vector3f::UnitX ()).normalized ());
92 Eigen::Affine3f transform_mg = Eigen::Translation3f ( rotation_mg * ((-1) * model_reference_point)) * rotation_mg;
94 Eigen::Vector3f model_point_transformed = transform_mg * model_point;
95 float angle = std::atan2 ( -model_point_transformed(2), model_point_transformed(1));
96 if (std::sin (angle) * model_point_transformed(2) < 0.0f)
102 PCL_ERROR (
"[pcl::%s::computeFeature] Computing pair feature vector between points %lu and %lu went wrong.\n", getClassName ().c_str (), i, j);
103 p.f1 = p.f2 = p.f3 = p.f4 = p.f5 = p.f6 = p.f7 = p.f8 = p.f9 = p.f10 = p.alpha_m = std::numeric_limits<float>::quiet_NaN ();
104 output.is_dense =
false;
109 p.f1 = p.f2 = p.f3 = p.f4 = p.f5 = p.f6 = p.f7 = p.f8 = p.f9 = p.f10 = p.alpha_m = std::numeric_limits<float>::quiet_NaN ();
110 output.is_dense =
false;
113 output.push_back (p);
118 output.width = output.size ();
121 #define PCL_INSTANTIATE_CPPFEstimation(T,NT,OutT) template class PCL_EXPORTS pcl::CPPFEstimation<T,NT,OutT>;
Class that calculates the "surflet" features for each pair in the given pointcloud.
CPPFEstimation()
Empty Constructor.
Feature represents the base feature class.
std::string feature_name_
The feature name.
search::KdTree is a wrapper class which inherits the pcl::KdTree class for performing search function...
PCL_EXPORTS bool computeCPPFPairFeature(const Eigen::Vector4f &p1, const Eigen::Vector4f &n1, const Eigen::Vector4i &c1, const Eigen::Vector4f &p2, const Eigen::Vector4f &n2, const Eigen::Vector4i &c2, float &f1, float &f2, float &f3, float &f4, float &f5, float &f6, float &f7, float &f8, float &f9, float &f10)