Point Cloud Library (PCL)  1.12.1-dev
correspondence_estimation_organized_projection.hpp
1 /*
2  * Software License Agreement (BSD License)
3  *
4  * Point Cloud Library (PCL) - www.pointclouds.org
5  * Copyright (c) 2010-2011, Willow Garage, Inc.
6  * Copyright (c) 2012-, Open Perception, Inc.
7  *
8  * All rights reserved.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  *
14  * * Redistributions of source code must retain the above copyright
15  * notice, this list of conditions and the following disclaimer.
16  * * Redistributions in binary form must reproduce the above
17  * copyright notice, this list of conditions and the following
18  * disclaimer in the documentation and/or other materials provided
19  * with the distribution.
20  * * Neither the name of the copyright holder(s) nor the names of its
21  * contributors may be used to endorse or promote products derived
22  * from this software without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
25  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
26  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
27  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
28  * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
29  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
30  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
31  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
32  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
34  * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35  * POSSIBILITY OF SUCH DAMAGE.
36  *
37  * $Id$
38  *
39  */
40 
41 #ifndef PCL_REGISTRATION_CORRESPONDENCE_ESTIMATION_ORGANIZED_PROJECTION_IMPL_HPP_
42 #define PCL_REGISTRATION_CORRESPONDENCE_ESTIMATION_ORGANIZED_PROJECTION_IMPL_HPP_
43 
44 namespace pcl {
45 
46 namespace registration {
47 
48 template <typename PointSource, typename PointTarget, typename Scalar>
49 bool
52 {
53  // Set the target_cloud_updated_ variable to true, so that the kd-tree is not built -
54  // it is not needed for this class
55  target_cloud_updated_ = false;
57  return (false);
58 
59  /// Check if the target cloud is organized
60  if (!target_->isOrganized()) {
61  PCL_WARN("[pcl::registration::%s::initCompute] Target cloud is not organized.\n",
62  getClassName().c_str());
63  return (false);
64  }
65 
66  /// Put the projection matrix together
67  projection_matrix_(0, 0) = fx_;
68  projection_matrix_(1, 1) = fy_;
69  projection_matrix_(0, 2) = cx_;
70  projection_matrix_(1, 2) = cy_;
71 
72  return (true);
73 }
74 
75 template <typename PointSource, typename PointTarget, typename Scalar>
76 void
78  determineCorrespondences(pcl::Correspondences& correspondences, double max_distance)
79 {
80  if (!initCompute())
81  return;
82 
83  correspondences.resize(indices_->size());
84  std::size_t c_index = 0;
85 
86  for (const auto& src_idx : (*indices_)) {
87  if (isFinite((*input_)[src_idx])) {
88  Eigen::Vector4f p_src(src_to_tgt_transformation_ *
89  (*input_)[src_idx].getVector4fMap());
90  Eigen::Vector3f p_src3(p_src[0], p_src[1], p_src[2]);
91  Eigen::Vector3f uv(projection_matrix_ * p_src3);
92 
93  /// Check if the point was behind the camera
94  if (uv[2] <= 0)
95  continue;
96 
97  int u = static_cast<int>(uv[0] / uv[2]);
98  int v = static_cast<int>(uv[1] / uv[2]);
99 
100  if (u >= 0 && u < static_cast<int>(target_->width) && v >= 0 &&
101  v < static_cast<int>(target_->height)) {
102  const PointTarget& pt_tgt = target_->at(u, v);
103  if (!isFinite(pt_tgt))
104  continue;
105  /// Check if the depth difference is larger than the threshold
106  if (std::abs(uv[2] - pt_tgt.z) > depth_threshold_)
107  continue;
108 
109  double dist = (p_src3 - pt_tgt.getVector3fMap()).norm();
110  if (dist < max_distance)
111  correspondences[c_index++] = pcl::Correspondence(
112  src_idx, v * target_->width + u, static_cast<float>(dist));
113  }
114  }
115  }
116 
117  correspondences.resize(c_index);
118 }
119 
120 template <typename PointSource, typename PointTarget, typename Scalar>
121 void
124  double max_distance)
125 {
126  // Call the normal determineCorrespondences (...), as doing it both ways will not
127  // improve the results
128  determineCorrespondences(correspondences, max_distance);
129 }
130 
131 } // namespace registration
132 } // namespace pcl
133 
134 #endif // PCL_REGISTRATION_CORRESPONDENCE_ESTIMATION_ORGANIZED_PROJECTION_IMPL_HPP_
Abstract CorrespondenceEstimationBase class.
void determineCorrespondences(Correspondences &correspondences, double max_distance)
Computes the correspondences, applying a maximum Euclidean distance threshold.
void determineReciprocalCorrespondences(Correspondences &correspondences, double max_distance)
Computes the correspondences, applying a maximum Euclidean distance threshold.
bool isFinite(const PointT &pt)
Tests if the 3D components of a point are all finite param[in] pt point to be tested return true if f...
Definition: point_tests.h:55
std::vector< pcl::Correspondence, Eigen::aligned_allocator< pcl::Correspondence > > Correspondences
Correspondence represents a match between two entities (e.g., points, descriptors,...