Point Cloud Library (PCL)  1.14.1-dev
statistical_outlier_removal.hpp
1 /*
2  * Software License Agreement (BSD License)
3  *
4  * Point Cloud Library (PCL) - www.pointclouds.org
5  * Copyright (c) 2010-2012, Willow Garage, Inc.
6  *
7  * All rights reserved.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  *
13  * * Redistributions of source code must retain the above copyright
14  * notice, this list of conditions and the following disclaimer.
15  * * Redistributions in binary form must reproduce the above
16  * copyright notice, this list of conditions and the following
17  * disclaimer in the documentation and/or other materials provided
18  * with the distribution.
19  * * Neither the name of the copyright holder(s) nor the names of its
20  * contributors may be used to endorse or promote products derived
21  * from this software without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
24  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
25  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
26  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
27  * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
28  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
29  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
30  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
31  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
33  * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
34  * POSSIBILITY OF SUCH DAMAGE.
35  *
36  * $Id$
37  *
38  */
39 
40 #ifndef PCL_FILTERS_IMPL_STATISTICAL_OUTLIER_REMOVAL_H_
41 #define PCL_FILTERS_IMPL_STATISTICAL_OUTLIER_REMOVAL_H_
42 
43 #include <pcl/filters/statistical_outlier_removal.h>
44 #include <pcl/search/organized.h> // for OrganizedNeighbor
45 #include <pcl/search/kdtree.h> // for KdTree
46 
47 ////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
48 template <typename PointT> void
50 {
51  // Initialize the search class
52  if (!searcher_)
53  {
54  if (input_->isOrganized ())
55  searcher_.reset (new pcl::search::OrganizedNeighbor<PointT> ());
56  else
57  searcher_.reset (new pcl::search::KdTree<PointT> (false));
58  }
59  if (!searcher_->setInputCloud (input_))
60  {
61  PCL_ERROR ("[pcl::%s::applyFilter] Error when initializing search method!\n", getClassName ().c_str ());
62  indices.clear ();
63  removed_indices_->clear ();
64  return;
65  }
66 
67  // The arrays to be used
68  const int searcher_k = mean_k_ + 1; // Find one more, since results include the query point.
69  Indices nn_indices (searcher_k);
70  std::vector<float> nn_dists (searcher_k);
71  std::vector<float> distances (indices_->size ());
72  indices.resize (indices_->size ());
73  removed_indices_->resize (indices_->size ());
74  int oii = 0, rii = 0; // oii = output indices iterator, rii = removed indices iterator
75 
76  // First pass: Compute the mean distances for all points with respect to their k nearest neighbors
77  int valid_distances = 0;
78  for (int iii = 0; iii < static_cast<int> (indices_->size ()); ++iii) // iii = input indices iterator
79  {
80  if (!std::isfinite ((*input_)[(*indices_)[iii]].x) ||
81  !std::isfinite ((*input_)[(*indices_)[iii]].y) ||
82  !std::isfinite ((*input_)[(*indices_)[iii]].z))
83  {
84  distances[iii] = 0.0;
85  continue;
86  }
87 
88  // Perform the nearest k search
89  if (searcher_->nearestKSearch ((*indices_)[iii], searcher_k, nn_indices, nn_dists) == 0)
90  {
91  distances[iii] = 0.0;
92  PCL_WARN ("[pcl::%s::applyFilter] Searching for the closest %d neighbors failed.\n", getClassName ().c_str (), mean_k_);
93  continue;
94  }
95 
96  // Calculate the mean distance to its neighbors.
97  double dist_sum = 0.0;
98  for (std::size_t k = 1; k < nn_dists.size(); ++k) // k = 0 is the query point
99  dist_sum += sqrt(nn_dists[k]);
100  distances[iii] = static_cast<float>(dist_sum / (nn_dists.size() - 1));
101  valid_distances++;
102  }
103 
104  // Estimate the mean and the standard deviation of the distance vector
105  double sum = 0, sq_sum = 0;
106  for (const float &distance : distances)
107  {
108  sum += distance;
109  sq_sum += distance * distance;
110  }
111  double mean = sum / static_cast<double>(valid_distances);
112  double variance = (sq_sum - sum * sum / static_cast<double>(valid_distances)) / (static_cast<double>(valid_distances) - 1);
113  double stddev = sqrt (variance);
114  //getMeanStd (distances, mean, stddev);
115 
116  double distance_threshold = mean + std_mul_ * stddev;
117 
118  // Second pass: Classify the points on the computed distance threshold
119  for (int iii = 0; iii < static_cast<int> (indices_->size ()); ++iii) // iii = input indices iterator
120  {
121  // Points having a too high average distance are outliers and are passed to removed indices
122  // Unless negative was set, then it's the opposite condition
123  if ((!negative_ && distances[iii] > distance_threshold) || (negative_ && distances[iii] <= distance_threshold))
124  {
125  if (extract_removed_indices_)
126  (*removed_indices_)[rii++] = (*indices_)[iii];
127  continue;
128  }
129 
130  // Otherwise it was a normal point for output (inlier)
131  indices[oii++] = (*indices_)[iii];
132  }
133 
134  // Resize the output arrays
135  indices.resize (oii);
136  removed_indices_->resize (rii);
137 }
138 
139 #define PCL_INSTANTIATE_StatisticalOutlierRemoval(T) template class PCL_EXPORTS pcl::StatisticalOutlierRemoval<T>;
140 
141 #endif // PCL_FILTERS_IMPL_STATISTICAL_OUTLIER_REMOVAL_H_
142 
void applyFilterIndices(Indices &indices)
Filtered results are indexed by an indices array.
search::KdTree is a wrapper class which inherits the pcl::KdTree class for performing search function...
Definition: kdtree.h:62
OrganizedNeighbor is a class for optimized nearest neighbor search in organized projectable point clo...
Definition: organized.h:66
float distance(const PointT &p1, const PointT &p2)
Definition: geometry.h:60
IndicesAllocator<> Indices
Type used for indices in PCL.
Definition: types.h:133