10 #include <pcl/common/pcl_filesystem.h>
12 #include <pcl/ml/dt/decision_tree_data_provider.h>
13 #include <pcl/recognition/face_detection/face_common.h>
15 #include <boost/algorithm/string.hpp>
23 namespace face_detection
25 template<
class FeatureType,
class DataSet,
class LabelType,
class ExampleIndex,
class NodeType>
30 std::vector<std::string> image_files_;
33 int patches_per_image_;
34 int min_images_per_bin_;
36 void getFilesInDirectory(pcl_fs::path & dir, std::string & rel_path_so_far, std::vector<std::string> & relative_paths, std::string & ext)
38 for (
const auto& dir_entry : pcl_fs::directory_iterator(dir))
41 if (pcl_fs::is_directory (dir_entry))
43 std::string so_far = rel_path_so_far + (dir_entry.path ().filename ()).
string () +
"/";
44 pcl_fs::path curr_path = dir_entry.path ();
45 getFilesInDirectory (curr_path, so_far, relative_paths, ext);
49 std::vector < std::string > strs;
50 std::string file = (dir_entry.path ().filename ()).
string ();
51 boost::split (strs, file, boost::is_any_of (
"."));
52 std::string extension = strs[strs.size () - 1];
56 std::string path = rel_path_so_far + (dir_entry.path ().filename ()).
string ();
57 relative_paths.push_back (path);
63 inline bool readMatrixFromFile(
const std::string& file, Eigen::Matrix4f & matrix)
67 in.open (file.c_str (), std::ifstream::in);
74 in.getline (linebuf, 1024);
75 std::string line (linebuf);
76 std::vector < std::string > strs_2;
77 boost::split (strs_2, line, boost::is_any_of (
" "));
79 for (
int i = 0; i < 16; i++)
81 matrix (i / 4, i % 4) =
static_cast<float> (atof (strs_2[i].c_str ()));
87 bool check_inside(
int col,
int row,
int min_col,
int max_col,
int min_row,
int max_row)
89 return col >= min_col && col <= max_col && row >= min_row && row <= max_row;
92 template<
class Po
intInT>
95 cloud_out.
width = max_col - min_col + 1;
96 cloud_out.
height = max_row - min_row + 1;
98 for (
unsigned int u = 0; u < cloud_out.
width; u++)
100 for (
unsigned int v = 0; v < cloud_out.
height; v++)
102 cloud_out.
at (u, v) = cloud_in.
at (min_col + u, min_row + v);
111 using Ptr = shared_ptr<FaceDetectorDataProvider<FeatureType, DataSet, LabelType, ExampleIndex, NodeType>>;
112 using ConstPtr = shared_ptr<const FaceDetectorDataProvider<FeatureType, DataSet, LabelType, ExampleIndex, NodeType>>;
117 USE_NORMALS_ =
false;
119 patches_per_image_ = 20;
120 min_images_per_bin_ = -1;
125 patches_per_image_ = n;
130 min_images_per_bin_ = n;
153 void getDatasetAndLabels(DataSet & data_set, std::vector<LabelType> & label_data, std::vector<ExampleIndex> & examples)
override;
shared_ptr< const DecisionTreeTrainerDataProvider< FeatureType, DataSet, LabelType, ExampleIndex, NodeType > > ConstPtr
shared_ptr< DecisionTreeTrainerDataProvider< FeatureType, DataSet, LabelType, ExampleIndex, NodeType > > Ptr
const PointT & at(int column, int row) const
Obtain the point given by the (column, row) coordinates.
bool is_dense
True if no points are invalid (e.g., have NaN or Inf values in any of their floating point fields).
void resize(std::size_t count)
Resizes the container to contain count elements.
std::uint32_t width
The point cloud width (if organized as an image-structure).
std::uint32_t height
The point cloud height (if organized as an image-structure).
FaceDetectorDataProvider()
void initialize(std::string &data_dir)
void setMinImagesPerBin(int n)
void setUseNormals(bool use)
void setPatchesPerImage(int n)
void getDatasetAndLabels(DataSet &data_set, std::vector< LabelType > &label_data, std::vector< ExampleIndex > &examples) override
Virtual function called to obtain training examples and labels before training a specific tree.
Defines functions, macros and traits for allocating and using memory.