Point Cloud Library (PCL)  1.14.1-dev
boundary.hpp
1 /*
2  * Software License Agreement (BSD License)
3  *
4  * Point Cloud Library (PCL) - www.pointclouds.org
5  * Copyright (c) 2010-2011, Willow Garage, Inc.
6  * Copyright (c) 2012-, Open Perception, Inc.
7  *
8  * All rights reserved.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  *
14  * * Redistributions of source code must retain the above copyright
15  * notice, this list of conditions and the following disclaimer.
16  * * Redistributions in binary form must reproduce the above
17  * copyright notice, this list of conditions and the following
18  * disclaimer in the documentation and/or other materials provided
19  * with the distribution.
20  * * Neither the name of the copyright holder(s) nor the names of its
21  * contributors may be used to endorse or promote products derived
22  * from this software without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
25  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
26  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
27  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
28  * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
29  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
30  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
31  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
32  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
34  * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35  * POSSIBILITY OF SUCH DAMAGE.
36  *
37  * $Id$
38  *
39  */
40 
41 #pragma once
42 
43 #include <pcl/features/boundary.h>
44 #include <pcl/common/point_tests.h> // for pcl::isFinite
45 
46 #include <cfloat>
47 
48 
49 //////////////////////////////////////////////////////////////////////////////////////////////
50 template <typename PointInT, typename PointNT, typename PointOutT> bool
52  const pcl::PointCloud<PointInT> &cloud, int q_idx,
53  const pcl::Indices &indices,
54  const Eigen::Vector4f &u, const Eigen::Vector4f &v,
55  const float angle_threshold)
56 {
57  return (isBoundaryPoint (cloud, cloud[q_idx], indices, u, v, angle_threshold));
58 }
59 
60 //////////////////////////////////////////////////////////////////////////////////////////////
61 template <typename PointInT, typename PointNT, typename PointOutT> bool
63  const pcl::PointCloud<PointInT> &cloud, const PointInT &q_point,
64  const pcl::Indices &indices,
65  const Eigen::Vector4f &u, const Eigen::Vector4f &v,
66  const float angle_threshold)
67 {
68  if (indices.size () < 3)
69  return (false);
70 
71  if (!std::isfinite (q_point.x) || !std::isfinite (q_point.y) || !std::isfinite (q_point.z))
72  return (false);
73 
74  // Compute the angles between each neighboring point and the query point itself
75  std::vector<float> angles (indices.size ());
76  float max_dif = 0, dif;
77  int cp = 0;
78 
79  for (const auto &index : indices)
80  {
81  if (!std::isfinite (cloud[index].x) ||
82  !std::isfinite (cloud[index].y) ||
83  !std::isfinite (cloud[index].z))
84  continue;
85 
86  Eigen::Vector4f delta = cloud[index].getVector4fMap () - q_point.getVector4fMap ();
87  if (delta == Eigen::Vector4f::Zero())
88  continue;
89 
90  angles[cp++] = std::atan2 (v.dot (delta), u.dot (delta)); // the angles are fine between -PI and PI too
91  }
92  if (cp == 0)
93  return (false);
94 
95  angles.resize (cp);
96  std::sort (angles.begin (), angles.end ());
97 
98  // Compute the maximal angle difference between two consecutive angles
99  for (std::size_t i = 0; i < angles.size () - 1; ++i)
100  {
101  dif = angles[i + 1] - angles[i];
102  if (max_dif < dif)
103  max_dif = dif;
104  }
105  // Get the angle difference between the last and the first
106  dif = 2 * static_cast<float> (M_PI) - angles[angles.size () - 1] + angles[0];
107  if (max_dif < dif)
108  max_dif = dif;
109 
110  // Check results
111  return (max_dif > angle_threshold);
112 }
113 
114 //////////////////////////////////////////////////////////////////////////////////////////////
115 template <typename PointInT, typename PointNT, typename PointOutT> void
117 {
118  // Allocate enough space to hold the results
119  // \note This resize is irrelevant for a radiusSearch ().
120  pcl::Indices nn_indices (k_);
121  std::vector<float> nn_dists (k_);
122 
123  Eigen::Vector4f u = Eigen::Vector4f::Zero (), v = Eigen::Vector4f::Zero ();
124 
125  output.is_dense = true;
126  // Save a few cycles by not checking every point for NaN/Inf values if the cloud is set to dense
127  if (input_->is_dense)
128  {
129  // Iterating over the entire index vector
130  for (std::size_t idx = 0; idx < indices_->size (); ++idx)
131  {
132  if (this->searchForNeighbors ((*indices_)[idx], search_parameter_, nn_indices, nn_dists) == 0)
133  {
134  output[idx].boundary_point = std::numeric_limits<std::uint8_t>::quiet_NaN ();
135  output.is_dense = false;
136  continue;
137  }
138 
139  // Obtain a coordinate system on the least-squares plane
140  //v = (*normals_)[(*indices_)[idx]].getNormalVector4fMap ().unitOrthogonal ();
141  //u = (*normals_)[(*indices_)[idx]].getNormalVector4fMap ().cross3 (v);
142  getCoordinateSystemOnPlane ((*normals_)[(*indices_)[idx]], u, v);
143 
144  // Estimate whether the point is lying on a boundary surface or not
145  output[idx].boundary_point = isBoundaryPoint (*surface_, (*input_)[(*indices_)[idx]], nn_indices, u, v, angle_threshold_);
146  }
147  }
148  else
149  {
150  // Iterating over the entire index vector
151  for (std::size_t idx = 0; idx < indices_->size (); ++idx)
152  {
153  if (!isFinite ((*input_)[(*indices_)[idx]]) ||
154  this->searchForNeighbors ((*indices_)[idx], search_parameter_, nn_indices, nn_dists) == 0)
155  {
156  output[idx].boundary_point = std::numeric_limits<std::uint8_t>::quiet_NaN ();
157  output.is_dense = false;
158  continue;
159  }
160 
161  // Obtain a coordinate system on the least-squares plane
162  //v = (*normals_)[(*indices_)[idx]].getNormalVector4fMap ().unitOrthogonal ();
163  //u = (*normals_)[(*indices_)[idx]].getNormalVector4fMap ().cross3 (v);
164  getCoordinateSystemOnPlane ((*normals_)[(*indices_)[idx]], u, v);
165 
166  // Estimate whether the point is lying on a boundary surface or not
167  output[idx].boundary_point = isBoundaryPoint (*surface_, (*input_)[(*indices_)[idx]], nn_indices, u, v, angle_threshold_);
168  }
169  }
170 }
171 
172 #define PCL_INSTANTIATE_BoundaryEstimation(PointInT,PointNT,PointOutT) template class PCL_EXPORTS pcl::BoundaryEstimation<PointInT, PointNT, PointOutT>;
173 
void computeFeature(PointCloudOut &output) override
Estimate whether a set of points is lying on surface boundaries using an angle criterion for all poin...
Definition: boundary.hpp:116
typename Feature< PointInT, PointOutT >::PointCloudOut PointCloudOut
Definition: boundary.h:96
bool isBoundaryPoint(const pcl::PointCloud< PointInT > &cloud, int q_idx, const pcl::Indices &indices, const Eigen::Vector4f &u, const Eigen::Vector4f &v, const float angle_threshold)
Check whether a point is a boundary point in a planar patch of projected points given by indices.
Definition: boundary.hpp:51
bool isFinite(const PointT &pt)
Tests if the 3D components of a point are all finite param[in] pt point to be tested return true if f...
Definition: point_tests.h:55
IndicesAllocator<> Indices
Type used for indices in PCL.
Definition: types.h:133
#define M_PI
Definition: pcl_macros.h:201