40 #ifndef PCL_ROPS_ESTIMATION_HPP_
41 #define PCL_ROPS_ESTIMATION_HPP_
43 #include <pcl/features/rops_estimation.h>
47 #include <Eigen/Eigenvalues>
50 template <
typename Po
intInT,
typename Po
intOutT>
54 triangles_of_the_point_ (0)
59 template <
typename Po
intInT,
typename Po
intOutT>
63 triangles_of_the_point_.clear ();
67 template <
typename Po
intInT,
typename Po
intOutT>
void
70 if (number_of_bins != 0)
71 number_of_bins_ = number_of_bins;
75 template <
typename Po
intInT,
typename Po
intOutT>
unsigned int
78 return (number_of_bins_);
82 template <
typename Po
intInT,
typename Po
intOutT>
void
85 if (number_of_rotations != 0)
87 number_of_rotations_ = number_of_rotations;
88 step_ = 90.0f /
static_cast <float> (number_of_rotations_ + 1);
93 template <
typename Po
intInT,
typename Po
intOutT>
unsigned int
96 return (number_of_rotations_);
100 template <
typename Po
intInT,
typename Po
intOutT>
void
103 if (support_radius > 0.0f)
105 support_radius_ = support_radius;
106 sqr_support_radius_ = support_radius * support_radius;
111 template <
typename Po
intInT,
typename Po
intOutT>
float
114 return (support_radius_);
118 template <
typename Po
intInT,
typename Po
intOutT>
void
121 triangles_ = triangles;
125 template <
typename Po
intInT,
typename Po
intOutT>
void
128 triangles = triangles_;
132 template <
typename Po
intInT,
typename Po
intOutT>
void
135 if (triangles_.empty ())
141 buildListOfPointsTriangles ();
144 unsigned int feature_size = number_of_rotations_ * 3 * 3 * 5;
145 const auto number_of_points = indices_->size ();
147 output.reserve (number_of_points);
149 for (
const auto& idx: *indices_)
151 std::set <unsigned int> local_triangles;
153 getLocalSurface ((*input_)[idx], local_triangles, local_points);
155 Eigen::Matrix3f lrf_matrix;
156 computeLRF ((*input_)[idx], local_triangles, lrf_matrix);
158 PointCloudIn transformed_cloud;
159 transformCloud ((*input_)[idx], lrf_matrix, local_points, transformed_cloud);
161 std::array<PointInT, 3> axes;
162 axes[0].x = 1.0f; axes[0].y = 0.0f; axes[0].z = 0.0f;
163 axes[1].x = 0.0f; axes[1].y = 1.0f; axes[1].z = 0.0f;
164 axes[2].x = 0.0f; axes[2].y = 0.0f; axes[2].z = 1.0f;
165 std::vector <float> feature;
166 for (
const auto &axis : axes)
172 PointCloudIn rotated_cloud;
173 Eigen::Vector3f min, max;
174 rotateCloud (axis, theta, transformed_cloud, rotated_cloud, min, max);
177 for (
unsigned int i_proj = 0; i_proj < 3; i_proj++)
179 Eigen::MatrixXf distribution_matrix;
180 distribution_matrix.resize (number_of_bins_, number_of_bins_);
181 getDistributionMatrix (i_proj, min, max, rotated_cloud, distribution_matrix);
184 std::vector <float> moments;
185 computeCentralMoments (distribution_matrix, moments);
187 feature.insert (feature.end (), moments.begin (), moments.end ());
191 }
while (theta < 90.0f);
194 const float norm = std::accumulate(
195 feature.cbegin(), feature.cend(), 0.f, [](
const auto& sum,
const auto& val) {
196 return sum + std::abs(val);
199 if (norm < std::numeric_limits <float>::epsilon ())
202 invert_norm = 1.0f /
norm;
204 output.emplace_back ();
205 for (std::size_t i_dim = 0; i_dim < feature_size; i_dim++)
206 output.back().histogram[i_dim] = feature[i_dim] * invert_norm;
211 template <
typename Po
intInT,
typename Po
intOutT>
void
214 triangles_of_the_point_.clear ();
216 std::vector <unsigned int> dummy;
218 triangles_of_the_point_.resize (surface_->points. size (), dummy);
220 for (std::size_t i_triangle = 0; i_triangle < triangles_.size (); i_triangle++)
221 for (
const auto& vertex: triangles_[i_triangle].vertices)
222 triangles_of_the_point_[vertex].push_back (i_triangle);
226 template <
typename Po
intInT,
typename Po
intOutT>
void
229 std::vector <float> distances;
230 tree_->radiusSearch (point, support_radius_, local_points, distances);
232 for (
const auto& pt: local_points)
233 local_triangles.insert (triangles_of_the_point_[pt].begin (),
234 triangles_of_the_point_[pt].end ());
238 template <
typename Po
intInT,
typename Po
intOutT>
void
241 std::size_t number_of_triangles = local_triangles.size ();
243 std::vector<Eigen::Matrix3f, Eigen::aligned_allocator<Eigen::Matrix3f> > scatter_matrices;
244 std::vector <float> triangle_area (number_of_triangles), distance_weight (number_of_triangles);
246 scatter_matrices.reserve (number_of_triangles);
247 triangle_area.clear ();
248 distance_weight.clear ();
250 float total_area = 0.0f;
251 const float coeff = 1.0f / 12.0f;
252 const float coeff_1_div_3 = 1.0f / 3.0f;
254 Eigen::Vector3f feature_point (point.x, point.y, point.z);
256 for (
const auto& triangle: local_triangles)
258 Eigen::Vector3f pt[3];
259 for (
unsigned int i_vertex = 0; i_vertex < 3; i_vertex++)
261 const unsigned int index = triangles_[triangle].vertices[i_vertex];
262 pt[i_vertex] (0) = (*surface_)[index].x;
263 pt[i_vertex] (1) = (*surface_)[index].y;
264 pt[i_vertex] (2) = (*surface_)[index].z;
267 const float curr_area = ((pt[1] - pt[0]).cross (pt[2] - pt[0])).norm ();
268 triangle_area.push_back (curr_area);
269 total_area += curr_area;
271 distance_weight.push_back (std::pow (support_radius_ - (feature_point - (pt[0] + pt[1] + pt[2]) * coeff_1_div_3).norm (), 2.0f));
273 Eigen::Matrix3f curr_scatter_matrix;
274 curr_scatter_matrix.setZero ();
275 for (
const auto &i_pt : pt)
277 Eigen::Vector3f vec = i_pt - feature_point;
278 curr_scatter_matrix += vec * (vec.transpose ());
279 for (
const auto &j_pt : pt)
280 curr_scatter_matrix += vec * ((j_pt - feature_point).transpose ());
282 scatter_matrices.emplace_back (coeff * curr_scatter_matrix);
285 if (std::abs (total_area) < std::numeric_limits <float>::epsilon ())
286 total_area = 1.0f / total_area;
290 Eigen::Matrix3f overall_scatter_matrix;
291 overall_scatter_matrix.setZero ();
292 std::vector<float> total_weight (number_of_triangles);
293 const float denominator = 1.0f / 6.0f;
294 for (std::size_t i_triangle = 0; i_triangle < number_of_triangles; i_triangle++)
296 const float factor = distance_weight[i_triangle] * triangle_area[i_triangle] * total_area;
297 overall_scatter_matrix += factor * scatter_matrices[i_triangle];
298 total_weight[i_triangle] = factor * denominator;
301 Eigen::Vector3f v1, v2, v3;
302 computeEigenVectors (overall_scatter_matrix, v1, v2, v3);
306 std::size_t i_triangle = 0;
307 for (
const auto& triangle: local_triangles)
309 Eigen::Vector3f pt[3];
310 for (
unsigned int i_vertex = 0; i_vertex < 3; i_vertex++)
312 const unsigned int index = triangles_[triangle].vertices[i_vertex];
313 pt[i_vertex] (0) = (*surface_)[index].x;
314 pt[i_vertex] (1) = (*surface_)[index].y;
315 pt[i_vertex] (2) = (*surface_)[index].z;
318 float factor1 = 0.0f;
319 float factor3 = 0.0f;
320 for (
const auto &i_pt : pt)
322 Eigen::Vector3f vec = i_pt - feature_point;
323 factor1 += vec.dot (v1);
324 factor3 += vec.dot (v3);
326 h1 += total_weight[i_triangle] * factor1;
327 h3 += total_weight[i_triangle] * factor3;
331 if (h1 < 0.0f) v1 = -v1;
332 if (h3 < 0.0f) v3 = -v3;
336 lrf_matrix.row (0) = v1;
337 lrf_matrix.row (1) = v2;
338 lrf_matrix.row (2) = v3;
342 template <
typename Po
intInT,
typename Po
intOutT>
void
344 Eigen::Vector3f& major_axis, Eigen::Vector3f& middle_axis, Eigen::Vector3f& minor_axis)
const
346 Eigen::EigenSolver <Eigen::Matrix3f> eigen_solver;
349 Eigen::EigenSolver <Eigen::Matrix3f>::EigenvectorsType eigen_vectors;
350 Eigen::EigenSolver <Eigen::Matrix3f>::EigenvalueType eigen_values;
351 eigen_vectors = eigen_solver.eigenvectors ();
352 eigen_values = eigen_solver.eigenvalues ();
354 unsigned int temp = 0;
355 unsigned int major_index = 0;
356 unsigned int middle_index = 1;
357 unsigned int minor_index = 2;
359 if (eigen_values.real () (major_index) < eigen_values.real () (middle_index))
362 major_index = middle_index;
366 if (eigen_values.real () (major_index) < eigen_values.real () (minor_index))
369 major_index = minor_index;
373 if (eigen_values.real () (middle_index) < eigen_values.real () (minor_index))
376 minor_index = middle_index;
380 major_axis = eigen_vectors.col (major_index).real ();
381 middle_axis = eigen_vectors.col (middle_index).real ();
382 minor_axis = eigen_vectors.col (minor_index).real ();
386 template <
typename Po
intInT,
typename Po
intOutT>
void
389 const auto number_of_points = local_points.size ();
390 transformed_cloud.clear ();
391 transformed_cloud.reserve (number_of_points);
393 for (
const auto& idx: local_points)
395 Eigen::Vector3f transformed_point ((*surface_)[idx].x - point.x,
396 (*surface_)[idx].y - point.y,
397 (*surface_)[idx].z - point.z);
399 transformed_point = matrix * transformed_point;
402 new_point.x = transformed_point (0);
403 new_point.y = transformed_point (1);
404 new_point.z = transformed_point (2);
405 transformed_cloud.emplace_back (new_point);
410 template <
typename Po
intInT,
typename Po
intOutT>
void
413 Eigen::Matrix3f rotation_matrix;
414 const float x = axis.x;
415 const float y = axis.y;
416 const float z = axis.z;
417 const float rad =
M_PI / 180.0f;
418 const float cosine = std::cos (angle * rad);
419 const float sine = std::sin (angle * rad);
420 rotation_matrix << cosine + (1 - cosine) * x * x, (1 - cosine) * x * y - sine * z, (1 - cosine) * x * z + sine * y,
421 (1 - cosine) * y * x + sine * z, cosine + (1 - cosine) * y * y, (1 - cosine) * y * z - sine * x,
422 (1 - cosine) * z * x - sine * y, (1 - cosine) * z * y + sine * x, cosine + (1 - cosine) * z * z;
424 const auto number_of_points = cloud.size ();
426 rotated_cloud.header = cloud.header;
427 rotated_cloud.width = number_of_points;
428 rotated_cloud.height = 1;
429 rotated_cloud.clear ();
430 rotated_cloud.reserve (number_of_points);
432 min (0) = std::numeric_limits <float>::max ();
433 min (1) = std::numeric_limits <float>::max ();
434 min (2) = std::numeric_limits <float>::max ();
435 max (0) = -std::numeric_limits <float>::max ();
436 max (1) = -std::numeric_limits <float>::max ();
437 max (2) = -std::numeric_limits <float>::max ();
439 for (
const auto& pt: cloud.points)
441 Eigen::Vector3f point (pt.x, pt.y, pt.z);
442 point = rotation_matrix * point;
444 PointInT rotated_point;
445 rotated_point.x = point (0);
446 rotated_point.y = point (1);
447 rotated_point.z = point (2);
448 rotated_cloud.emplace_back (rotated_point);
450 for (
int i = 0; i < 3; ++i)
452 min(i) = std::min(min(i), point(i));
453 max(i) = std::max(max(i), point(i));
459 template <
typename Po
intInT,
typename Po
intOutT>
void
464 const unsigned int coord[3][2] = {
469 const float u_bin_length = (max (coord[projection][0]) - min (coord[projection][0])) / number_of_bins_;
470 const float v_bin_length = (max (coord[projection][1]) - min (coord[projection][1])) / number_of_bins_;
472 for (
const auto& pt: cloud.points)
474 Eigen::Vector3f point (pt.x, pt.y, pt.z);
476 const float u_length = point (coord[projection][0]) - min[coord[projection][0]];
477 const float v_length = point (coord[projection][1]) - min[coord[projection][1]];
479 const float u_ratio = u_length / u_bin_length;
480 auto row =
static_cast <unsigned int> (u_ratio);
481 if (row == number_of_bins_) row--;
483 const float v_ratio = v_length / v_bin_length;
484 auto col =
static_cast <unsigned int> (v_ratio);
485 if (col == number_of_bins_) col--;
487 matrix (row, col) += 1.0f;
490 matrix /= std::max<float> (1, cloud.size ());
494 template <
typename Po
intInT,
typename Po
intOutT>
void
500 for (
unsigned int i = 0; i < number_of_bins_; i++)
501 for (
unsigned int j = 0; j < number_of_bins_; j++)
503 const float m = matrix (i, j);
504 mean_i +=
static_cast <float> (i + 1) * m;
505 mean_j +=
static_cast <float> (j + 1) * m;
508 const unsigned int number_of_moments_to_compute = 4;
509 const float power[number_of_moments_to_compute][2] = {
515 float entropy = 0.0f;
516 moments.resize (number_of_moments_to_compute + 1, 0.0f);
517 for (
unsigned int i = 0; i < number_of_bins_; i++)
519 const float i_factor =
static_cast <float> (i + 1) - mean_i;
520 for (
unsigned int j = 0; j < number_of_bins_; j++)
522 const float j_factor =
static_cast <float> (j + 1) - mean_j;
523 const float m = matrix (i, j);
525 entropy -= m * std::log (m);
526 for (
unsigned int i_moment = 0; i_moment < number_of_moments_to_compute; i_moment++)
527 moments[i_moment] += std::pow (i_factor, power[i_moment][0]) * std::pow (j_factor, power[i_moment][1]) * m;
531 moments[number_of_moments_to_compute] = entropy;
void compute(PointCloudOut &output)
Base method for feature estimation for all points given in <setInputCloud (), setIndices ()> using th...
This class implements the method for extracting RoPS features presented in the article "Rotational Pr...
__device__ __host__ __forceinline__ float norm(const float3 &v1, const float3 &v2)
IndicesAllocator<> Indices
Type used for indices in PCL.