Point Cloud Library (PCL)  1.14.1-dev
regression_variance_stats_estimator.h
1 /*
2  * Software License Agreement (BSD License)
3  *
4  * Point Cloud Library (PCL) - www.pointclouds.org
5  * Copyright (c) 2010-2011, Willow Garage, Inc.
6  *
7  * All rights reserved.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  *
13  * * Redistributions of source code must retain the above copyright
14  * notice, this list of conditions and the following disclaimer.
15  * * Redistributions in binary form must reproduce the above
16  * copyright notice, this list of conditions and the following
17  * disclaimer in the documentation and/or other materials provided
18  * with the distribution.
19  * * Neither the name of Willow Garage, Inc. nor the names of its
20  * contributors may be used to endorse or promote products derived
21  * from this software without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
24  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
25  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
26  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
27  * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
28  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
29  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
30  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
31  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
33  * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
34  * POSSIBILITY OF SUCH DAMAGE.
35  *
36  */
37 
38 #pragma once
39 
40 #include <pcl/common/common.h>
41 #include <pcl/ml/branch_estimator.h>
42 #include <pcl/ml/stats_estimator.h>
43 
44 #include <istream>
45 #include <ostream>
46 
47 namespace pcl {
48 
49 /** Node for a regression trees which optimizes variance. */
50 template <class FeatureType, class LabelType>
52 public:
53  /** Constructor. */
54  RegressionVarianceNode() : value(0), variance(0), threshold(0), sub_nodes() {}
55 
56  /** Serializes the node to the specified stream.
57  *
58  * \param[out] stream the destination for the serialization
59  */
60  inline void
61  serialize(std::ostream& stream) const
62  {
63  feature.serialize(stream);
64 
65  stream.write(reinterpret_cast<const char*>(&threshold), sizeof(threshold));
66 
67  stream.write(reinterpret_cast<const char*>(&value), sizeof(value));
68  stream.write(reinterpret_cast<const char*>(&variance), sizeof(variance));
69 
70  const int num_of_sub_nodes = static_cast<int>(sub_nodes.size());
71  stream.write(reinterpret_cast<const char*>(&num_of_sub_nodes),
72  sizeof(num_of_sub_nodes));
73  for (int sub_node_index = 0; sub_node_index < num_of_sub_nodes; ++sub_node_index) {
74  sub_nodes[sub_node_index].serialize(stream);
75  }
76  }
77 
78  /** Deserializes a node from the specified stream.
79  *
80  * \param[in] stream the source for the deserialization
81  */
82  inline void
83  deserialize(std::istream& stream)
84  {
85  feature.deserialize(stream);
86 
87  stream.read(reinterpret_cast<char*>(&threshold), sizeof(threshold));
88 
89  stream.read(reinterpret_cast<char*>(&value), sizeof(value));
90  stream.read(reinterpret_cast<char*>(&variance), sizeof(variance));
91 
92  int num_of_sub_nodes;
93  stream.read(reinterpret_cast<char*>(&num_of_sub_nodes), sizeof(num_of_sub_nodes));
94  sub_nodes.resize(num_of_sub_nodes);
95 
96  if (num_of_sub_nodes > 0) {
97  for (int sub_node_index = 0; sub_node_index < num_of_sub_nodes;
98  ++sub_node_index) {
99  sub_nodes[sub_node_index].deserialize(stream);
100  }
101  }
102  }
103 
104 public:
105  /** The feature associated with the node. */
106  FeatureType feature;
107 
108  /** The threshold applied on the feature response. */
109  float threshold;
110 
111  /** The label value of this node. */
112  LabelType value;
113 
114  /** The variance of the labels that ended up at this node during training. */
115  LabelType variance;
116 
117  /** The child nodes. */
118  std::vector<RegressionVarianceNode> sub_nodes;
119 };
120 
121 /** Statistics estimator for regression trees which optimizes variance. */
122 template <class LabelDataType, class NodeType, class DataSet, class ExampleIndex>
124 : public pcl::StatsEstimator<LabelDataType, NodeType, DataSet, ExampleIndex> {
125 public:
126  /** Constructor. */
128  : branch_estimator_(branch_estimator)
129  {}
130 
131  /** Returns the number of branches the corresponding tree has. */
132  inline std::size_t
134  {
135  // return 2;
136  return branch_estimator_->getNumOfBranches();
137  }
138 
139  /** Returns the label of the specified node.
140  *
141  * \param[in] node the node which label is returned
142  */
143  inline LabelDataType
144  getLabelOfNode(NodeType& node) const
145  {
146  return node.value;
147  }
148 
149  /** Computes the information gain obtained by the specified threshold.
150  *
151  * \param[in] data_set the data set corresponding to the supplied result data
152  * \param[in] examples the examples used for extracting the supplied result data
153  * \param[in] label_data the label data corresponding to the specified examples
154  * \param[in] results the results computed using the specified examples
155  * \param[in] flags the flags corresponding to the results
156  * \param[in] threshold the threshold for which the information gain is computed
157  */
158  float
159  computeInformationGain(DataSet& data_set,
160  std::vector<ExampleIndex>& examples,
161  std::vector<LabelDataType>& label_data,
162  std::vector<float>& results,
163  std::vector<unsigned char>& flags,
164  const float threshold) const
165  {
166  const std::size_t num_of_examples = examples.size();
167  const std::size_t num_of_branches = getNumOfBranches();
168 
169  // compute variance
170  std::vector<LabelDataType> sums(num_of_branches + 1, 0);
171  std::vector<LabelDataType> sqr_sums(num_of_branches + 1, 0);
172  std::vector<std::size_t> branch_element_count(num_of_branches + 1, 0);
173 
174  for (std::size_t branch_index = 0; branch_index < num_of_branches; ++branch_index) {
175  branch_element_count[branch_index] = 1;
176  ++branch_element_count[num_of_branches];
177  }
178 
179  for (std::size_t example_index = 0; example_index < num_of_examples;
180  ++example_index) {
181  unsigned char branch_index;
182  computeBranchIndex(
183  results[example_index], flags[example_index], threshold, branch_index);
184 
185  LabelDataType label = label_data[example_index];
186 
187  sums[branch_index] += label;
188  sums[num_of_branches] += label;
189 
190  sqr_sums[branch_index] += label * label;
191  sqr_sums[num_of_branches] += label * label;
192 
193  ++branch_element_count[branch_index];
194  ++branch_element_count[num_of_branches];
195  }
196 
197  std::vector<float> variances(num_of_branches + 1, 0);
198  for (std::size_t branch_index = 0; branch_index < num_of_branches + 1;
199  ++branch_index) {
200  const float mean_sum =
201  static_cast<float>(sums[branch_index]) / branch_element_count[branch_index];
202  const float mean_sqr_sum = static_cast<float>(sqr_sums[branch_index]) /
203  branch_element_count[branch_index];
204  variances[branch_index] = mean_sqr_sum - mean_sum * mean_sum;
205  }
206 
207  float information_gain = variances[num_of_branches];
208  for (std::size_t branch_index = 0; branch_index < num_of_branches; ++branch_index) {
209  // const float weight = static_cast<float>(sums[branchIndex]) /
210  // sums[numOfBranches];
211  const float weight = static_cast<float>(branch_element_count[branch_index]) /
212  static_cast<float>(branch_element_count[num_of_branches]);
213  information_gain -= weight * variances[branch_index];
214  }
215 
216  return information_gain;
217  }
218 
219  /** Computes the branch indices for all supplied results.
220  *
221  * \param[in] results the results the branch indices will be computed for
222  * \param[in] flags the flags corresponding to the specified results
223  * \param[in] threshold the threshold used to compute the branch indices
224  * \param[out] branch_indices the destination for the computed branch indices
225  */
226  void
227  computeBranchIndices(std::vector<float>& results,
228  std::vector<unsigned char>& flags,
229  const float threshold,
230  std::vector<unsigned char>& branch_indices) const
231  {
232  const std::size_t num_of_results = results.size();
233  const std::size_t num_of_branches = getNumOfBranches();
234 
235  branch_indices.resize(num_of_results);
236  for (std::size_t result_index = 0; result_index < num_of_results; ++result_index) {
237  unsigned char branch_index;
238  computeBranchIndex(
239  results[result_index], flags[result_index], threshold, branch_index);
240  branch_indices[result_index] = branch_index;
241  }
242  }
243 
244  /** Computes the branch index for the specified result.
245  *
246  * \param[in] result the result the branch index will be computed for
247  * \param[in] flag the flag corresponding to the specified result
248  * \param[in] threshold the threshold used to compute the branch index
249  * \param[out] branch_index the destination for the computed branch index
250  */
251  inline void
252  computeBranchIndex(const float result,
253  const unsigned char flag,
254  const float threshold,
255  unsigned char& branch_index) const
256  {
257  branch_estimator_->computeBranchIndex(result, flag, threshold, branch_index);
258  // branch_index = (result > threshold) ? 1 : 0;
259  }
260 
261  /** Computes and sets the statistics for a node.
262  *
263  * \param[in] data_set the data set which is evaluated
264  * \param[in] examples the examples which define which parts of the data set are use
265  * for evaluation
266  * \param[in] label_data the label_data corresponding to the examples
267  * \param[out] node the destination node for the statistics
268  */
269  void
270  computeAndSetNodeStats(DataSet& data_set,
271  std::vector<ExampleIndex>& examples,
272  std::vector<LabelDataType>& label_data,
273  NodeType& node) const
274  {
275  const std::size_t num_of_examples = examples.size();
276 
277  LabelDataType sum = 0.0f;
278  LabelDataType sqr_sum = 0.0f;
279  for (std::size_t example_index = 0; example_index < num_of_examples;
280  ++example_index) {
281  const LabelDataType label = label_data[example_index];
282 
283  sum += label;
284  sqr_sum += label * label;
285  }
286 
287  sum /= num_of_examples;
288  sqr_sum /= num_of_examples;
289 
290  const float variance = sqr_sum - sum * sum;
291 
292  node.value = sum;
293  node.variance = variance;
294  }
295 
296  /** Generates code for branch index computation.
297  *
298  * \param[in] node the node for which code is generated
299  * \param[out] stream the destination for the generated code
300  */
301  void
302  generateCodeForBranchIndexComputation(NodeType& node, std::ostream& stream) const
303  {
304  stream << "ERROR: RegressionVarianceStatsEstimator does not implement "
305  "generateCodeForBranchIndex(...)";
306  }
307 
308  /** Generates code for label output.
309  *
310  * \param[in] node the node for which code is generated
311  * \param[out] stream the destination for the generated code
312  */
313  void
314  generateCodeForOutput(NodeType& node, std::ostream& stream) const
315  {
316  stream << "ERROR: RegressionVarianceStatsEstimator does not implement "
317  "generateCodeForBranchIndex(...)";
318  }
319 
320 private:
321  /// The branch estimator
322  pcl::BranchEstimator* branch_estimator_;
323 };
324 
325 } // namespace pcl
Interface for branch estimators.
Node for a regression trees which optimizes variance.
void serialize(std::ostream &stream) const
Serializes the node to the specified stream.
LabelType variance
The variance of the labels that ended up at this node during training.
void deserialize(std::istream &stream)
Deserializes a node from the specified stream.
float threshold
The threshold applied on the feature response.
FeatureType feature
The feature associated with the node.
LabelType value
The label value of this node.
std::vector< RegressionVarianceNode > sub_nodes
The child nodes.
Statistics estimator for regression trees which optimizes variance.
void generateCodeForOutput(NodeType &node, std::ostream &stream) const
Generates code for label output.
void computeAndSetNodeStats(DataSet &data_set, std::vector< ExampleIndex > &examples, std::vector< LabelDataType > &label_data, NodeType &node) const
Computes and sets the statistics for a node.
void computeBranchIndex(const float result, const unsigned char flag, const float threshold, unsigned char &branch_index) const
Computes the branch index for the specified result.
LabelDataType getLabelOfNode(NodeType &node) const
Returns the label of the specified node.
void computeBranchIndices(std::vector< float > &results, std::vector< unsigned char > &flags, const float threshold, std::vector< unsigned char > &branch_indices) const
Computes the branch indices for all supplied results.
RegressionVarianceStatsEstimator(BranchEstimator *branch_estimator)
Constructor.
float computeInformationGain(DataSet &data_set, std::vector< ExampleIndex > &examples, std::vector< LabelDataType > &label_data, std::vector< float > &results, std::vector< unsigned char > &flags, const float threshold) const
Computes the information gain obtained by the specified threshold.
std::size_t getNumOfBranches() const
Returns the number of branches the corresponding tree has.
void generateCodeForBranchIndexComputation(NodeType &node, std::ostream &stream) const
Generates code for branch index computation.
Class interface for gathering statistics for decision tree learning.
Define standard C methods and C++ classes that are common to all methods.
#define PCL_EXPORTS
Definition: pcl_macros.h:325