Point Cloud Library (PCL)
1.14.1-dev
pcl
ml
svm.h
1
/*
2
* Software License Agreement (BSD License)
3
*
4
* Point Cloud Library (PCL) - www.pointclouds.org
5
* Copyright (c) 2010-2012, Willow Garage, Inc.
6
* Copyright (c) 2000-2012 Chih-Chung Chang and Chih-Jen Lin
7
*
8
* All rights reserved.
9
*
10
* Redistribution and use in source and binary forms, with or without
11
* modification, are permitted provided that the following conditions
12
* are met:
13
*
14
* * Redistributions of source code must retain the above copyright
15
* notice, this list of conditions and the following disclaimer.
16
* * Redistributions in binary form must reproduce the above
17
* copyright notice, this list of conditions and the following
18
* disclaimer in the documentation and/or other materials provided
19
* with the distribution.
20
* * Neither the name of copyright holders nor the names of its
21
* contributors may be used to endorse or promote products derived
22
* from this software without specific prior written permission.
23
*
24
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
25
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
26
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
27
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
28
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
29
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
30
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
31
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
32
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
34
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35
* POSSIBILITY OF SUCH DAMAGE.
36
*
37
*/
38
39
#pragma once
40
41
#define LIBSVM_VERSION 311
42
43
#ifdef __cplusplus
44
extern
"C"
{
45
#endif
46
47
extern
int
libsvm_version;
48
49
struct
svm_node
{
50
int
index
;
51
double
value
;
52
};
53
54
struct
svm_problem
{
55
int
l
;
56
double
*
y
;
57
58
struct
svm_node
**
x
;
59
};
60
61
struct
svm_scaling
{
62
// index = 1 if usable, index = 0 if not
63
64
struct
svm_node
*
obj
;
65
66
// max features scaled
67
int
max
{0};
68
69
svm_scaling
() =
default
;
70
};
71
72
enum
{ C_SVC, NU_SVC, ONE_CLASS, EPSILON_SVR, NU_SVR };
/* svm_type */
73
enum
{ LINEAR, POLY, RBF, SIGMOID, PRECOMPUTED };
/* kernel_type */
74
75
struct
svm_parameter
{
76
int
svm_type
;
77
int
kernel_type
;
78
int
degree
;
/* for poly */
79
double
gamma
;
/* for poly/rbf/sigmoid */
80
double
coef0
;
/* for poly/sigmoid */
81
82
/* these are for training only */
83
double
cache_size
;
/* in MB */
84
double
eps
;
/* stopping criteria */
85
double
C
;
/* for C_SVC, EPSILON_SVR and NU_SVR */
86
int
nr_weight
;
/* for C_SVC */
87
int
*
weight_label
;
/* for C_SVC */
88
double
*
weight
;
/* for C_SVC */
89
double
nu
;
/* for NU_SVC, ONE_CLASS, and NU_SVR */
90
double
p
;
/* for EPSILON_SVR */
91
int
shrinking
;
/* use the shrinking heuristics */
92
int
probability
;
/* do probability estimates */
93
};
94
95
//
96
// svm_model
97
//
98
99
struct
svm_model
{
100
101
struct
svm_parameter
param
;
/* parameter */
102
int
nr_class
;
/* number of classes, = 2 in regression/one class svm */
103
int
l
;
/* total #SV */
104
105
struct
svm_node
**
SV
;
/* SVs (SV[l]) */
106
double
**
sv_coef
;
/* coefficients for SVs in decision functions (sv_coef[k-1][l]) */
107
double
*
rho
;
/* constants in decision functions (rho[k*(k-1)/2]) */
108
double
*
probA
;
/* pariwise probability information */
109
double
*
probB
;
110
111
/* for classification only */
112
113
int
*
label
;
/* label of each class (label[k]) */
114
int
*
nSV
;
/* number of SVs for each class (nSV[k]) */
115
/* nSV[0] + nSV[1] + ... + nSV[k-1] = l */
116
/* XXX */
117
int
free_sv
;
/* 1 if svm_model is created by svm_load_model*/
118
/* 0 if svm_model is created by svm_train */
119
120
/* for scaling */
121
122
struct
svm_node
*
scaling
;
123
};
124
125
struct
svm_model
*
126
svm_train(
const
struct
svm_problem
* prob,
const
struct
svm_parameter
*
param
);
127
void
128
svm_cross_validation(
const
struct
svm_problem
* prob,
129
const
struct
svm_parameter
*
param
,
130
int
nr_fold,
131
double
* target);
132
133
int
134
svm_save_model(
const
char
* model_file_name,
const
struct
svm_model
* model);
135
136
struct
svm_model
*
137
svm_load_model(
const
char
* model_file_name);
138
139
int
140
svm_get_svm_type(
const
struct
svm_model
* model);
141
142
int
143
svm_get_nr_class(
const
struct
svm_model
* model);
144
145
void
146
svm_get_labels(
const
struct
svm_model
* model,
int
*
label
);
147
148
double
149
svm_get_svr_probability(
const
struct
svm_model
* model);
150
151
double
152
svm_predict_values(
const
struct
svm_model
* model,
153
const
struct
svm_node
* x,
154
double
* dec_values);
155
double
156
svm_predict(
const
struct
svm_model
* model,
const
struct
svm_node
* x);
157
158
double
159
svm_predict_probability(
const
struct
svm_model
* model,
160
const
struct
svm_node
* x,
161
double
* prob_estimates);
162
163
void
164
svm_free_model_content(
struct
svm_model
* model_ptr);
165
166
void
167
svm_free_and_destroy_model(
struct
svm_model
** model_ptr_ptr);
168
169
void
170
svm_destroy_param(
struct
svm_parameter
*
param
);
171
172
const
char
*
173
svm_check_parameter(
const
struct
svm_problem
* prob,
const
struct
svm_parameter
*
param
);
174
175
int
176
svm_check_probability_model(
const
struct
svm_model
* model);
177
178
void
179
svm_set_print_string_function(
void
(*print_func)(
const
char
*));
180
181
#ifdef __cplusplus
182
}
183
184
#endif
svm_model
Definition:
svm.h:99
svm_model::rho
double * rho
Definition:
svm.h:107
svm_model::nSV
int * nSV
Definition:
svm.h:114
svm_model::free_sv
int free_sv
Definition:
svm.h:117
svm_model::nr_class
int nr_class
Definition:
svm.h:102
svm_model::scaling
struct svm_node * scaling
Definition:
svm.h:122
svm_model::probB
double * probB
Definition:
svm.h:109
svm_model::param
struct svm_parameter param
Definition:
svm.h:101
svm_model::SV
struct svm_node ** SV
Definition:
svm.h:105
svm_model::sv_coef
double ** sv_coef
Definition:
svm.h:106
svm_model::l
int l
Definition:
svm.h:103
svm_model::label
int * label
Definition:
svm.h:113
svm_model::probA
double * probA
Definition:
svm.h:108
svm_node
Definition:
svm.h:49
svm_node::value
double value
Definition:
svm.h:51
svm_node::index
int index
Definition:
svm.h:50
svm_parameter
Definition:
svm.h:75
svm_parameter::cache_size
double cache_size
Definition:
svm.h:83
svm_parameter::weight_label
int * weight_label
Definition:
svm.h:87
svm_parameter::eps
double eps
Definition:
svm.h:84
svm_parameter::coef0
double coef0
Definition:
svm.h:80
svm_parameter::svm_type
int svm_type
Definition:
svm.h:76
svm_parameter::p
double p
Definition:
svm.h:90
svm_parameter::kernel_type
int kernel_type
Definition:
svm.h:77
svm_parameter::nr_weight
int nr_weight
Definition:
svm.h:86
svm_parameter::nu
double nu
Definition:
svm.h:89
svm_parameter::gamma
double gamma
Definition:
svm.h:79
svm_parameter::C
double C
Definition:
svm.h:85
svm_parameter::probability
int probability
Definition:
svm.h:92
svm_parameter::shrinking
int shrinking
Definition:
svm.h:91
svm_parameter::degree
int degree
Definition:
svm.h:78
svm_parameter::weight
double * weight
Definition:
svm.h:88
svm_problem
Definition:
svm.h:54
svm_problem::l
int l
Definition:
svm.h:55
svm_problem::y
double * y
Definition:
svm.h:56
svm_problem::x
struct svm_node ** x
Definition:
svm.h:58
svm_scaling
Definition:
svm.h:61
svm_scaling::svm_scaling
svm_scaling()=default
svm_scaling::obj
struct svm_node * obj
Definition:
svm.h:64
svm_scaling::max
int max
Definition:
svm.h:67