Point Cloud Library (PCL)  1.14.1-dev
decision_forest_evaluator.hpp
1 /*
2  * Software License Agreement (BSD License)
3  *
4  * Point Cloud Library (PCL) - www.pointclouds.org
5  * Copyright (c) 2010-2011, Willow Garage, Inc.
6  *
7  * All rights reserved.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  *
13  * * Redistributions of source code must retain the above copyright
14  * notice, this list of conditions and the following disclaimer.
15  * * Redistributions in binary form must reproduce the above
16  * copyright notice, this list of conditions and the following
17  * disclaimer in the documentation and/or other materials provided
18  * with the distribution.
19  * * Neither the name of Willow Garage, Inc. nor the names of its
20  * contributors may be used to endorse or promote products derived
21  * from this software without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
24  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
25  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
26  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
27  * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
28  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
29  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
30  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
31  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
33  * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
34  * POSSIBILITY OF SUCH DAMAGE.
35  *
36  */
37 
38 #pragma once
39 
40 #include <pcl/common/common.h>
41 #include <pcl/ml/dt/decision_forest.h>
42 #include <pcl/ml/dt/decision_forest_evaluator.h>
43 #include <pcl/ml/feature_handler.h>
44 #include <pcl/ml/stats_estimator.h>
45 
46 #include <vector>
47 
48 template <class FeatureType,
49  class DataSet,
50  class LabelType,
51  class ExampleIndex,
52  class NodeType>
55 : tree_evaluator_()
56 {}
57 
58 template <class FeatureType,
59  class DataSet,
60  class LabelType,
61  class ExampleIndex,
62  class NodeType>
64  ~DecisionForestEvaluator() = default;
65 
66 template <class FeatureType,
67  class DataSet,
68  class LabelType,
69  class ExampleIndex,
70  class NodeType>
71 void
76  stats_estimator,
77  DataSet& data_set,
78  std::vector<ExampleIndex>& examples,
79  std::vector<LabelType>& label_data)
80 {
81  const std::size_t num_of_examples = examples.size();
82  label_data.resize(num_of_examples, 0);
83 
84  for (std::size_t forest_index = 0; forest_index < forest.size(); ++forest_index) {
85  tree_evaluator_.evaluateAndAdd(forest[forest_index],
86  feature_handler,
87  stats_estimator,
88  data_set,
89  examples,
90  label_data);
91  }
92 
93  const float inv_num_of_trees = 1.0f / static_cast<float>(forest.size());
94  for (std::size_t label_index = 0; label_index < label_data.size(); ++label_index) {
95  label_data[label_index] *= inv_num_of_trees;
96  }
97 }
98 
99 template <class FeatureType,
100  class DataSet,
101  class LabelType,
102  class ExampleIndex,
103  class NodeType>
104 void
109  stats_estimator,
110  DataSet& data_set,
111  ExampleIndex example,
112  std::vector<NodeType>& leaves)
113 {
114  leaves.resize(forest.size());
115  for (std::size_t forest_index = 0; forest_index < forest.size(); ++forest_index) {
116  NodeType leave;
117  tree_evaluator_.evaluate(forest[forest_index],
118  feature_handler,
119  stats_estimator,
120  data_set,
121  example,
122  leave);
123  leaves[forest_index] = leave;
124  }
125 }
virtual ~DecisionForestEvaluator()
Destructor.
void evaluate(pcl::DecisionForest< NodeType > &DecisionForestEvaluator, pcl::FeatureHandler< FeatureType, DataSet, ExampleIndex > &feature_handler, pcl::StatsEstimator< LabelType, NodeType, DataSet, ExampleIndex > &stats_estimator, DataSet &data_set, std::vector< ExampleIndex > &examples, std::vector< LabelType > &label_data)
Evaluates the specified examples using the supplied forest.
Class representing a decision forest.
Utility class interface which is used for creating and evaluating features.
Define standard C methods and C++ classes that are common to all methods.