Trainer for a Fern.
More...
#include <pcl/ml/ferns/fern_trainer.h>
|
| FernTrainer () |
| Constructor. More...
|
|
void | setFeatureHandler (pcl::FeatureHandler< FeatureType, DataSet, ExampleIndex > &feature_handler) |
| Sets the feature handler used to create and evaluate features. More...
|
|
void | setStatsEstimator (pcl::StatsEstimator< LabelType, NodeType, DataSet, ExampleIndex > &stats_estimator) |
| Sets the object for estimating the statistics for tree nodes. More...
|
|
void | setFernDepth (const std::size_t fern_depth) |
| Sets the maximum depth of the learned tree. More...
|
|
void | setNumOfFeatures (const std::size_t num_of_features) |
| Sets the number of features used to find optimal decision features. More...
|
|
void | setNumOfThresholds (const std::size_t num_of_threshold) |
| Sets the number of thresholds tested for finding the optimal decision threshold on the feature responses. More...
|
|
void | setTrainingDataSet (DataSet &data_set) |
| Sets the input data set used for training. More...
|
|
void | setExamples (std::vector< ExampleIndex > &examples) |
| Example indices that specify the data used for training. More...
|
|
void | setLabelData (std::vector< LabelType > &label_data) |
| Sets the label data corresponding to the example data. More...
|
|
void | train (Fern< FeatureType, NodeType > &fern) |
| Trains a decision tree using the set training data and settings. More...
|
|
|
static void | createThresholdsUniform (const std::size_t num_of_thresholds, std::vector< float > &values, std::vector< float > &thresholds) |
| Creates uniformly distributed thresholds over the range of the supplied values. More...
|
|
template<class FeatureType, class DataSet, class LabelType, class ExampleIndex, class NodeType>
class pcl::FernTrainer< FeatureType, DataSet, LabelType, ExampleIndex, NodeType >
Trainer for a Fern.
Definition at line 55 of file fern_trainer.h.
◆ FernTrainer()
template<class FeatureType , class DataSet , class LabelType , class ExampleIndex , class NodeType >
◆ createThresholdsUniform()
template<class FeatureType , class DataSet , class LabelType , class ExampleIndex , class NodeType >
void pcl::FernTrainer< FeatureType, DataSet, LabelType, ExampleIndex, NodeType >::createThresholdsUniform |
( |
const std::size_t |
num_of_thresholds, |
|
|
std::vector< float > & |
values, |
|
|
std::vector< float > & |
thresholds |
|
) |
| |
|
staticprotected |
Creates uniformly distributed thresholds over the range of the supplied values.
- Parameters
-
[in] | num_of_thresholds | the number of thresholds to create |
[in] | values | the values for estimating the expected value range |
[out] | thresholds | the resulting thresholds |
Definition at line 291 of file fern_trainer.hpp.
◆ setExamples()
template<class FeatureType , class DataSet , class LabelType , class ExampleIndex , class NodeType >
void pcl::FernTrainer< FeatureType, DataSet, LabelType, ExampleIndex, NodeType >::setExamples |
( |
std::vector< ExampleIndex > & |
examples | ) |
|
|
inline |
Example indices that specify the data used for training.
- Parameters
-
Definition at line 129 of file fern_trainer.h.
◆ setFeatureHandler()
template<class FeatureType , class DataSet , class LabelType , class ExampleIndex , class NodeType >
void pcl::FernTrainer< FeatureType, DataSet, LabelType, ExampleIndex, NodeType >::setFeatureHandler |
( |
pcl::FeatureHandler< FeatureType, DataSet, ExampleIndex > & |
feature_handler | ) |
|
|
inline |
Sets the feature handler used to create and evaluate features.
- Parameters
-
[in] | feature_handler | the feature handler |
Definition at line 66 of file fern_trainer.h.
◆ setFernDepth()
template<class FeatureType , class DataSet , class LabelType , class ExampleIndex , class NodeType >
void pcl::FernTrainer< FeatureType, DataSet, LabelType, ExampleIndex, NodeType >::setFernDepth |
( |
const std::size_t |
fern_depth | ) |
|
|
inline |
Sets the maximum depth of the learned tree.
- Parameters
-
[in] | fern_depth | maximum depth of the learned tree |
Definition at line 88 of file fern_trainer.h.
◆ setLabelData()
template<class FeatureType , class DataSet , class LabelType , class ExampleIndex , class NodeType >
void pcl::FernTrainer< FeatureType, DataSet, LabelType, ExampleIndex, NodeType >::setLabelData |
( |
std::vector< LabelType > & |
label_data | ) |
|
|
inline |
Sets the label data corresponding to the example data.
- Parameters
-
[in] | label_data | the label data |
Definition at line 139 of file fern_trainer.h.
◆ setNumOfFeatures()
template<class FeatureType , class DataSet , class LabelType , class ExampleIndex , class NodeType >
void pcl::FernTrainer< FeatureType, DataSet, LabelType, ExampleIndex, NodeType >::setNumOfFeatures |
( |
const std::size_t |
num_of_features | ) |
|
|
inline |
Sets the number of features used to find optimal decision features.
- Parameters
-
[in] | num_of_features | the number of features |
Definition at line 98 of file fern_trainer.h.
◆ setNumOfThresholds()
template<class FeatureType , class DataSet , class LabelType , class ExampleIndex , class NodeType >
void pcl::FernTrainer< FeatureType, DataSet, LabelType, ExampleIndex, NodeType >::setNumOfThresholds |
( |
const std::size_t |
num_of_threshold | ) |
|
|
inline |
Sets the number of thresholds tested for finding the optimal decision threshold on the feature responses.
- Parameters
-
[in] | num_of_threshold | the number of thresholds |
Definition at line 109 of file fern_trainer.h.
◆ setStatsEstimator()
template<class FeatureType , class DataSet , class LabelType , class ExampleIndex , class NodeType >
void pcl::FernTrainer< FeatureType, DataSet, LabelType, ExampleIndex, NodeType >::setStatsEstimator |
( |
pcl::StatsEstimator< LabelType, NodeType, DataSet, ExampleIndex > & |
stats_estimator | ) |
|
|
inline |
Sets the object for estimating the statistics for tree nodes.
- Parameters
-
[in] | stats_estimator | the statistics estimator |
Definition at line 77 of file fern_trainer.h.
◆ setTrainingDataSet()
template<class FeatureType , class DataSet , class LabelType , class ExampleIndex , class NodeType >
void pcl::FernTrainer< FeatureType, DataSet, LabelType, ExampleIndex, NodeType >::setTrainingDataSet |
( |
DataSet & |
data_set | ) |
|
|
inline |
Sets the input data set used for training.
- Parameters
-
[in] | data_set | the data set used for training |
Definition at line 119 of file fern_trainer.h.
◆ train()
template<class FeatureType , class DataSet , class LabelType , class ExampleIndex , class NodeType >
void pcl::FernTrainer< FeatureType, DataSet, LabelType, ExampleIndex, NodeType >::train |
( |
pcl::Fern< FeatureType, NodeType > & |
fern | ) |
|
The documentation for this class was generated from the following files: