computeMedian(const PointCloudConstPtr &cloud, const IndicesPtr &indices, Eigen::Vector4f &median) const | pcl::MaximumLikelihoodSampleConsensus< PointT > | protected |
computeMedianAbsoluteDeviation(const PointCloudConstPtr &cloud, const IndicesPtr &indices, double sigma) const | pcl::MaximumLikelihoodSampleConsensus< PointT > | protected |
computeModel(int debug_verbosity_level=0) override | pcl::MaximumLikelihoodSampleConsensus< PointT > | virtual |
ConstPtr typedef | pcl::MaximumLikelihoodSampleConsensus< PointT > | |
getDistanceThreshold() const | pcl::SampleConsensus< PointT > | inline |
getEMIterations() const | pcl::MaximumLikelihoodSampleConsensus< PointT > | inline |
getInliers(Indices &inliers) const | pcl::SampleConsensus< PointT > | inline |
getMaxIterations() const | pcl::SampleConsensus< PointT > | inline |
getMinMax(const PointCloudConstPtr &cloud, const IndicesPtr &indices, Eigen::Vector4f &min_p, Eigen::Vector4f &max_p) const | pcl::MaximumLikelihoodSampleConsensus< PointT > | protected |
getModel(Indices &model) const | pcl::SampleConsensus< PointT > | inline |
getModelCoefficients(Eigen::VectorXf &model_coefficients) const | pcl::SampleConsensus< PointT > | inline |
getNumberOfThreads() const | pcl::SampleConsensus< PointT > | inline |
getProbability() const | pcl::SampleConsensus< PointT > | inline |
getRandomSamples(const IndicesPtr &indices, std::size_t nr_samples, std::set< index_t > &indices_subset) | pcl::SampleConsensus< PointT > | inline |
getSampleConsensusModel() const | pcl::SampleConsensus< PointT > | inline |
inliers_ | pcl::SampleConsensus< PointT > | protected |
iterations_ | pcl::SampleConsensus< PointT > | protected |
max_iterations_ | pcl::SampleConsensus< PointT > | protected |
MaximumLikelihoodSampleConsensus(const SampleConsensusModelPtr &model) | pcl::MaximumLikelihoodSampleConsensus< PointT > | inline |
MaximumLikelihoodSampleConsensus(const SampleConsensusModelPtr &model, double threshold) | pcl::MaximumLikelihoodSampleConsensus< PointT > | inline |
model_ | pcl::SampleConsensus< PointT > | protected |
model_coefficients_ | pcl::SampleConsensus< PointT > | protected |
probability_ | pcl::SampleConsensus< PointT > | protected |
Ptr typedef | pcl::MaximumLikelihoodSampleConsensus< PointT > | |
refineModel(const double sigma=3.0, const unsigned int max_iterations=1000) | pcl::SampleConsensus< PointT > | inlinevirtual |
rnd() | pcl::SampleConsensus< PointT > | inlineprotected |
rng_ | pcl::SampleConsensus< PointT > | protected |
rng_alg_ | pcl::SampleConsensus< PointT > | protected |
sac_model_ | pcl::SampleConsensus< PointT > | protected |
SampleConsensus(const SampleConsensusModelPtr &model, bool random=false) | pcl::SampleConsensus< PointT > | inline |
SampleConsensus(const SampleConsensusModelPtr &model, double threshold, bool random=false) | pcl::SampleConsensus< PointT > | inline |
setDistanceThreshold(double threshold) | pcl::SampleConsensus< PointT > | inline |
setEMIterations(int iterations) | pcl::MaximumLikelihoodSampleConsensus< PointT > | inline |
setMaxIterations(int max_iterations) | pcl::SampleConsensus< PointT > | inline |
setNumberOfThreads(const int nr_threads=-1) | pcl::SampleConsensus< PointT > | inline |
setProbability(double probability) | pcl::SampleConsensus< PointT > | inline |
setSampleConsensusModel(const SampleConsensusModelPtr &model) | pcl::SampleConsensus< PointT > | inline |
threads_ | pcl::SampleConsensus< PointT > | protected |
threshold_ | pcl::SampleConsensus< PointT > | protected |
~SampleConsensus()=default | pcl::SampleConsensus< PointT > | virtual |