Point Cloud Library (PCL)  1.14.1-dev
rf_face_utils.h
1 /*
2  * fanellis_face_detector.h
3  *
4  * Created on: 22 Sep 2012
5  * Author: Aitor Aldoma
6  */
7 
8 #pragma once
9 
10 #include "pcl/recognition/face_detection/face_common.h"
11 #include <pcl/ml/feature_handler.h>
12 #include <pcl/ml/stats_estimator.h>
13 #include <pcl/ml/branch_estimator.h>
14 
15 namespace pcl
16 {
17  namespace face_detection
18  {
19  template<class FT, class DataSet, class ExampleIndex>
20  class FeatureHandlerDepthAverage: public pcl::FeatureHandler<FT, DataSet, ExampleIndex>
21  {
22 
23  private:
24  int wsize_; //size of the window
25  int max_patch_size_; //max size of the smaller patches
26  int num_channels_; //the number of feature channels
27  float min_valid_small_patch_depth_; //percentage of valid depth in a small patch
28  public:
29 
31  {
32  wsize_ = 80;
33  max_patch_size_ = 40;
34  num_channels_ = 1;
35  min_valid_small_patch_depth_ = 0.5f;
36  }
37 
38  /** \brief Sets the size of the window to extract features.
39  * \param[in] w Window size.
40  */
41  void setWSize(int w)
42  {
43  wsize_ = w;
44  }
45 
46  /** \brief Sets the number of channels a feature has (i.e. 1 - depth, 4 - depth + normals)
47  * \param[in] nf Number of channels.
48  */
49  void setNumChannels(int nf)
50  {
51  num_channels_ = nf;
52  }
53 
54  /** \brief Create a set of random tests to evaluate examples.
55  * \param[in] w Number features to generate.
56  */
57  void setMaxPatchSize(int w)
58  {
59  max_patch_size_ = w;
60  }
61 
62  /** \brief Create a set of random tests to evaluate examples.
63  * \param[in] num_of_features Number features to generated.
64  * \param[out] features Generated features.
65  */
66  /*void createRandomFeatures(const std::size_t num_of_features, std::vector<FT> & features)
67  {
68  srand (time(NULL));
69  int min_s = 10;
70  float range_d = 0.03f;
71  for (std::size_t i = 0; i < num_of_features; i++)
72  {
73  FT f;
74 
75  f.row1_ = rand () % (wsize_ - max_patch_size_ - 1);
76  f.col1_ = rand () % (wsize_ / 2 - max_patch_size_ - 1);
77  f.wsizex1_ = min_s + (rand () % (max_patch_size_ - min_s - 1));
78  f.wsizey1_ = min_s + (rand () % (max_patch_size_ - min_s - 1));
79 
80  f.row2_ = rand () % (wsize_ - max_patch_size_ - 1);
81  f.col2_ = wsize_ / 2 + rand () % (wsize_ / 2 - max_patch_size_ - 1);
82  f.wsizex2_ = min_s + (rand () % (max_patch_size_ - 1 - min_s));
83  f.wsizey2_ = min_s + (rand () % (max_patch_size_ - 1 - min_s));
84 
85  f.used_ii_ = 0;
86  if(num_channels_ > 1)
87  f.used_ii_ = rand() % num_channels_;
88 
89  f.threshold_ = -range_d + (rand () / static_cast<float> (RAND_MAX)) * (range_d * 2.f);
90  features.push_back (f);
91  }
92  }*/
93 
94  void createRandomFeatures(const std::size_t num_of_features, std::vector<FT> & features) override
95  {
96  srand (static_cast<unsigned int>(time (nullptr)));
97  int min_s = 20;
98  float range_d = 0.05f;
99  float incr_d = 0.01f;
100 
101  std::vector < FT > windows_and_functions;
102 
103  for (std::size_t i = 0; i < num_of_features; i++)
104  {
105  FT f;
106 
107  f.row1_ = rand () % (wsize_ - max_patch_size_ - 1);
108  f.col1_ = rand () % (wsize_ / 2 - max_patch_size_ - 1);
109  f.wsizex1_ = min_s + (rand () % (max_patch_size_ - min_s - 1));
110  f.wsizey1_ = min_s + (rand () % (max_patch_size_ - min_s - 1));
111 
112  f.row2_ = rand () % (wsize_ - max_patch_size_ - 1);
113  f.col2_ = wsize_ / 2 + rand () % (wsize_ / 2 - max_patch_size_ - 1);
114  f.wsizex2_ = min_s + (rand () % (max_patch_size_ - 1 - min_s));
115  f.wsizey2_ = min_s + (rand () % (max_patch_size_ - 1 - min_s));
116 
117  f.used_ii_ = 0;
118  if (num_channels_ > 1)
119  f.used_ii_ = rand () % num_channels_;
120 
121  windows_and_functions.push_back (f);
122  }
123 
124  for (std::size_t i = 0; i < windows_and_functions.size (); i++)
125  {
126  FT f = windows_and_functions[i];
127  for (std::size_t j = 0; j <= 10; j++)
128  {
129  f.threshold_ = -range_d + static_cast<float> (j) * incr_d;
130  features.push_back (f);
131  }
132  }
133  }
134 
135  /** \brief Evaluates a feature on the specified set of examples.
136  * \param[in] feature The feature to evaluate.
137  * \param[in] data_set The data set on which the feature is evaluated.
138  * \param[in] examples The set of examples of the data set the feature is evaluated on.
139  * \param[out] results The destination for the results of the feature evaluation.
140  * \param[out] flags Flags that are supplied together with the results.
141  */
142  void evaluateFeature(const FT & feature, DataSet & data_set, std::vector<ExampleIndex> & examples, std::vector<float> & results,
143  std::vector<unsigned char> & flags) const override
144  {
145  results.resize (examples.size ());
146  for (std::size_t i = 0; i < examples.size (); i++)
147  {
148  evaluateFeature (feature, data_set, examples[i], results[i], flags[i]);
149  }
150  }
151 
152  /** \brief Evaluates a feature on the specified example.
153  * \param[in] feature The feature to evaluate.
154  * \param[in] data_set The data set on which the feature is evaluated.
155  * \param[in] example The example of the data set the feature is evaluated on.
156  * \param[out] result The destination for the result of the feature evaluation.
157  * \param[out] flag Flags that are supplied together with the results.
158  */
159  void evaluateFeature(const FT & feature, DataSet & data_set, const ExampleIndex & example, float & result, unsigned char & flag) const override
160  {
161  TrainingExample te = data_set[example];
162  int el_f1 = te.iimages_[feature.used_ii_]->getFiniteElementsCount (te.col_ + feature.col1_, te.row_ + feature.row1_, feature.wsizex1_,
163  feature.wsizey1_);
164  int el_f2 = te.iimages_[feature.used_ii_]->getFiniteElementsCount (te.col_ + feature.col2_, te.row_ + feature.row2_, feature.wsizex2_,
165  feature.wsizey2_);
166 
167  float sum_f1 = static_cast<float>(te.iimages_[feature.used_ii_]->getFirstOrderSum (te.col_ + feature.col1_, te.row_ + feature.row1_, feature.wsizex1_, feature.wsizey1_));
168  float sum_f2 = static_cast<float>(te.iimages_[feature.used_ii_]->getFirstOrderSum (te.col_ + feature.col2_, te.row_ + feature.row2_, feature.wsizex2_, feature.wsizey2_));
169 
170  float f = min_valid_small_patch_depth_;
171  if (el_f1 == 0 || el_f2 == 0 || (el_f1 <= static_cast<int> (f * static_cast<float>(feature.wsizex1_ * feature.wsizey1_)))
172  || (el_f2 <= static_cast<int> (f * static_cast<float>(feature.wsizex2_ * feature.wsizey2_))))
173  {
174  result = static_cast<float> (pcl_round (static_cast<float>(rand ()) / static_cast<float> (RAND_MAX)));
175  flag = 1;
176  } else
177  {
178  result = static_cast<float> ((sum_f1 / static_cast<float>(el_f1) - sum_f2 / static_cast<float>(el_f2)) > feature.threshold_);
179  flag = 0;
180  }
181 
182  }
183 
184  /** \brief Generates evaluation code for the specified feature and writes it to the specified stream.
185  */
186  // param[in] feature The feature for which code is generated.
187  // param[out] stream The destination for the code.
188  void generateCodeForEvaluation(const FT &/*feature*/, ::std::ostream &/*stream*/) const override
189  {
190 
191  }
192  };
193 
194  /** \brief Statistics estimator for regression trees which optimizes information gain and pose parameters error. */
195  template<class LabelDataType, class NodeType, class DataSet, class ExampleIndex>
196  class PoseClassRegressionVarianceStatsEstimator: public pcl::StatsEstimator<LabelDataType, NodeType, DataSet, ExampleIndex>
197  {
198 
199  public:
200  /** \brief Constructor. */
202  branch_estimator_ (branch_estimator)
203  {
204  }
205 
206  /** \brief Destructor. */
208 
209  /** \brief Returns the number of branches the corresponding tree has. */
210  inline std::size_t getNumOfBranches() const override
211  {
212  return branch_estimator_->getNumOfBranches ();
213  }
214 
215  /** \brief Returns the label of the specified node.
216  * \param[in] node The node which label is returned.
217  */
218  inline LabelDataType getLabelOfNode(NodeType & node) const override
219  {
220  return node.value;
221  }
222 
223  /** \brief Computes the covariance matrix for translation offsets.
224  * \param[in] data_set The corresponding data set.
225  * \param[in] examples A set of examples from the dataset.
226  * \param[out] covariance_matrix The covariance matrix.
227  * \param[out] centroid The mean of the data.
228  */
229  inline unsigned int computeMeanAndCovarianceOffset(DataSet & data_set, std::vector<ExampleIndex> & examples, Eigen::Matrix3d & covariance_matrix,
230  Eigen::Vector3d & centroid) const
231  {
232  Eigen::Matrix<double, 1, 9, Eigen::RowMajor> accu = Eigen::Matrix<double, 1, 9, Eigen::RowMajor>::Zero ();
233  auto point_count = static_cast<unsigned int> (examples.size ());
234 
235  for (std::size_t i = 0; i < point_count; ++i)
236  {
237  TrainingExample te = data_set[examples[i]];
238  accu[0] += te.trans_[0] * te.trans_[0];
239  accu[1] += te.trans_[0] * te.trans_[1];
240  accu[2] += te.trans_[0] * te.trans_[2];
241  accu[3] += te.trans_[1] * te.trans_[1];
242  accu[4] += te.trans_[1] * te.trans_[2];
243  accu[5] += te.trans_[2] * te.trans_[2];
244  accu[6] += te.trans_[0];
245  accu[7] += te.trans_[1];
246  accu[8] += te.trans_[2];
247  }
248 
249  if (point_count != 0)
250  {
251  accu /= static_cast<double> (point_count);
252  centroid.head<3> ().matrix () = accu.tail<3> ();
253  covariance_matrix.coeffRef (0) = accu[0] - accu[6] * accu[6];
254  covariance_matrix.coeffRef (1) = accu[1] - accu[6] * accu[7];
255  covariance_matrix.coeffRef (2) = accu[2] - accu[6] * accu[8];
256  covariance_matrix.coeffRef (4) = accu[3] - accu[7] * accu[7];
257  covariance_matrix.coeffRef (5) = accu[4] - accu[7] * accu[8];
258  covariance_matrix.coeffRef (8) = accu[5] - accu[8] * accu[8];
259  covariance_matrix.coeffRef (3) = covariance_matrix.coeff (1);
260  covariance_matrix.coeffRef (6) = covariance_matrix.coeff (2);
261  covariance_matrix.coeffRef (7) = covariance_matrix.coeff (5);
262  }
263 
264  return point_count;
265  }
266 
267  /** \brief Computes the covariance matrix for rotation values.
268  * \param[in] data_set The corresponding data set.
269  * \param[in] examples A set of examples from the dataset.
270  * \param[out] covariance_matrix The covariance matrix.
271  * \param[out] centroid The mean of the data.
272  */
273  inline unsigned int computeMeanAndCovarianceAngles(DataSet & data_set, std::vector<ExampleIndex> & examples, Eigen::Matrix3d & covariance_matrix,
274  Eigen::Vector3d & centroid) const
275  {
276  Eigen::Matrix<double, 1, 9, Eigen::RowMajor> accu = Eigen::Matrix<double, 1, 9, Eigen::RowMajor>::Zero ();
277  auto point_count = static_cast<unsigned int> (examples.size ());
278 
279  for (std::size_t i = 0; i < point_count; ++i)
280  {
281  TrainingExample te = data_set[examples[i]];
282  accu[0] += te.rot_[0] * te.rot_[0];
283  accu[1] += te.rot_[0] * te.rot_[1];
284  accu[2] += te.rot_[0] * te.rot_[2];
285  accu[3] += te.rot_[1] * te.rot_[1];
286  accu[4] += te.rot_[1] * te.rot_[2];
287  accu[5] += te.rot_[2] * te.rot_[2];
288  accu[6] += te.rot_[0];
289  accu[7] += te.rot_[1];
290  accu[8] += te.rot_[2];
291  }
292 
293  if (point_count != 0)
294  {
295  accu /= static_cast<double> (point_count);
296  centroid.head<3> ().matrix () = accu.tail<3> ();
297  covariance_matrix.coeffRef (0) = accu[0] - accu[6] * accu[6];
298  covariance_matrix.coeffRef (1) = accu[1] - accu[6] * accu[7];
299  covariance_matrix.coeffRef (2) = accu[2] - accu[6] * accu[8];
300  covariance_matrix.coeffRef (4) = accu[3] - accu[7] * accu[7];
301  covariance_matrix.coeffRef (5) = accu[4] - accu[7] * accu[8];
302  covariance_matrix.coeffRef (8) = accu[5] - accu[8] * accu[8];
303  covariance_matrix.coeffRef (3) = covariance_matrix.coeff (1);
304  covariance_matrix.coeffRef (6) = covariance_matrix.coeff (2);
305  covariance_matrix.coeffRef (7) = covariance_matrix.coeff (5);
306  }
307 
308  return point_count;
309  }
310 
311  /** \brief Computes the information gain obtained by the specified threshold.
312  * \param[in] data_set The data set corresponding to the supplied result data.
313  * \param[in] examples The examples used for extracting the supplied result data.
314  * \param[in] label_data The label data corresponding to the specified examples.
315  * \param[in] results The results computed using the specified examples.
316  * \param[in] flags The flags corresponding to the results.
317  * \param[in] threshold The threshold for which the information gain is computed.
318  */
319  float computeInformationGain(DataSet & data_set, std::vector<ExampleIndex> & examples, std::vector<LabelDataType> & label_data,
320  std::vector<float> & results, std::vector<unsigned char> & flags, const float threshold) const override
321  {
322  const std::size_t num_of_examples = examples.size ();
323  const std::size_t num_of_branches = getNumOfBranches ();
324 
325  // compute variance
326  std::vector < LabelDataType > sums (num_of_branches + 1, 0.f);
327  std::vector < LabelDataType > sqr_sums (num_of_branches + 1, 0.f);
328  std::vector < std::size_t > branch_element_count (num_of_branches + 1, 0.f);
329 
330  for (std::size_t branch_index = 0; branch_index < num_of_branches; ++branch_index)
331  {
332  branch_element_count[branch_index] = 1;
333  ++branch_element_count[num_of_branches];
334  }
335 
336  for (std::size_t example_index = 0; example_index < num_of_examples; ++example_index)
337  {
338  unsigned char branch_index;
339  computeBranchIndex (results[example_index], flags[example_index], threshold, branch_index);
340 
341  LabelDataType label = label_data[example_index];
342 
343  ++branch_element_count[branch_index];
344  ++branch_element_count[num_of_branches];
345 
346  sums[branch_index] += label;
347  sums[num_of_branches] += label;
348  }
349 
350  std::vector<float> hp (num_of_branches + 1, 0.f);
351  for (std::size_t branch_index = 0; branch_index < (num_of_branches + 1); ++branch_index)
352  {
353  float pf = sums[branch_index] / static_cast<float> (branch_element_count[branch_index]);
354  float pnf = (static_cast<LabelDataType>(branch_element_count[branch_index]) - sums[branch_index] + 1.f)
355  / static_cast<LabelDataType> (branch_element_count[branch_index]);
356  hp[branch_index] -= static_cast<float>(pf * std::log (pf) + pnf * std::log (pnf));
357  }
358 
359  //use mean of the examples as purity
360  float purity = sums[num_of_branches] / static_cast<LabelDataType>(branch_element_count[num_of_branches]);
361  float tp = 0.8f;
362 
363  if (purity >= tp)
364  {
365  //compute covariance matrices from translation offsets and angles for the whole set and children
366  //consider only positive examples...
367  std::vector < std::size_t > branch_element_count (num_of_branches + 1, 0);
368  std::vector < std::vector<ExampleIndex> > positive_examples;
369  positive_examples.resize (num_of_branches + 1);
370 
371  for (std::size_t example_index = 0; example_index < num_of_examples; ++example_index)
372  {
373  unsigned char branch_index;
374  computeBranchIndex (results[example_index], flags[example_index], threshold, branch_index);
375 
376  LabelDataType label = label_data[example_index];
377 
378  if (label == 1 /*&& !flags[example_index]*/)
379  {
380  ++branch_element_count[branch_index];
381  ++branch_element_count[num_of_branches];
382 
383  positive_examples[branch_index].push_back (examples[example_index]);
384  positive_examples[num_of_branches].push_back (examples[example_index]);
385  }
386  }
387 
388  //compute covariance from offsets and angles for all branches
389  std::vector < Eigen::Matrix3d > offset_covariances;
390  std::vector < Eigen::Matrix3d > angle_covariances;
391 
392  std::vector < Eigen::Vector3d > offset_centroids;
393  std::vector < Eigen::Vector3d > angle_centroids;
394 
395  offset_covariances.resize (num_of_branches + 1);
396  angle_covariances.resize (num_of_branches + 1);
397  offset_centroids.resize (num_of_branches + 1);
398  angle_centroids.resize (num_of_branches + 1);
399 
400  for (std::size_t branch_index = 0; branch_index < (num_of_branches + 1); ++branch_index)
401  {
402  computeMeanAndCovarianceOffset (data_set, positive_examples[branch_index], offset_covariances[branch_index],
403  offset_centroids[branch_index]);
404  computeMeanAndCovarianceAngles (data_set, positive_examples[branch_index], angle_covariances[branch_index],
405  angle_centroids[branch_index]);
406  }
407 
408  //update information_gain
409  std::vector<float> hr (num_of_branches + 1, 0.f);
410  for (std::size_t branch_index = 0; branch_index < (num_of_branches + 1); ++branch_index)
411  {
412  hr[branch_index] = static_cast<float>(0.5f * std::log (std::pow (2 * M_PI, 3)
413  * offset_covariances[branch_index].determinant ())
414  + 0.5f * std::log (std::pow (2 * M_PI, 3)
415  * angle_covariances[branch_index].determinant ()));
416  }
417 
418  for (std::size_t branch_index = 0; branch_index < (num_of_branches + 1); ++branch_index)
419  {
420  hp[branch_index] += std::max (sums[branch_index] / static_cast<float> (branch_element_count[branch_index]) - tp, 0.f) * hr[branch_index];
421  }
422  }
423 
424  float information_gain = hp[num_of_branches + 1];
425  for (std::size_t branch_index = 0; branch_index < (num_of_branches); ++branch_index)
426  {
427  information_gain -= static_cast<float> (branch_element_count[branch_index]) / static_cast<float> (branch_element_count[num_of_branches])
428  * hp[branch_index];
429  }
430 
431  return information_gain;
432  }
433 
434  /** \brief Computes the branch indices for all supplied results.
435  * \param[in] results The results the branch indices will be computed for.
436  * \param[in] flags The flags corresponding to the specified results.
437  * \param[in] threshold The threshold used to compute the branch indices.
438  * \param[out] branch_indices The destination for the computed branch indices.
439  */
440  void computeBranchIndices(std::vector<float> & results, std::vector<unsigned char> & flags, const float threshold,
441  std::vector<unsigned char> & branch_indices) const override
442  {
443  const std::size_t num_of_results = results.size ();
444 
445  branch_indices.resize (num_of_results);
446  for (std::size_t result_index = 0; result_index < num_of_results; ++result_index)
447  {
448  unsigned char branch_index;
449  computeBranchIndex (results[result_index], flags[result_index], threshold, branch_index);
450  branch_indices[result_index] = branch_index;
451  }
452  }
453 
454  /** \brief Computes the branch index for the specified result.
455  * \param[in] result The result the branch index will be computed for.
456  * \param[in] flag The flag corresponding to the specified result.
457  * \param[in] threshold The threshold used to compute the branch index.
458  * \param[out] branch_index The destination for the computed branch index.
459  */
460  inline void computeBranchIndex(const float result, const unsigned char flag, const float threshold, unsigned char & branch_index) const override
461  {
462  branch_estimator_->computeBranchIndex (result, flag, threshold, branch_index);
463  }
464 
465  /** \brief Computes and sets the statistics for a node.
466  * \param[in] data_set The data set which is evaluated.
467  * \param[in] examples The examples which define which parts of the data set are used for evaluation.
468  * \param[in] label_data The label_data corresponding to the examples.
469  * \param[out] node The destination node for the statistics.
470  */
471  void computeAndSetNodeStats(DataSet & data_set, std::vector<ExampleIndex> & examples, std::vector<LabelDataType> & label_data, NodeType & node) const override
472  {
473  const std::size_t num_of_examples = examples.size ();
474 
475  LabelDataType sum = 0.0f;
476  LabelDataType sqr_sum = 0.0f;
477  for (std::size_t example_index = 0; example_index < num_of_examples; ++example_index)
478  {
479  const LabelDataType label = label_data[example_index];
480 
481  sum += label;
482  sqr_sum += label * label;
483  }
484 
485  sum /= static_cast<float>(num_of_examples);
486  sqr_sum /= static_cast<float>(num_of_examples);
487 
488  const float variance = sqr_sum - sum * sum;
489 
490  node.value = sum;
491  node.variance = variance;
492 
493  //set node stats regarding pose regression
494  std::vector < ExampleIndex > positive_examples;
495 
496  for (std::size_t example_index = 0; example_index < num_of_examples; ++example_index)
497  {
498  LabelDataType label = label_data[example_index];
499 
500  if (label == 1)
501  positive_examples.push_back (examples[example_index]);
502 
503  }
504 
505  //compute covariance from offsets and angles
506  computeMeanAndCovarianceOffset (data_set, positive_examples, node.covariance_trans_, node.trans_mean_);
507  computeMeanAndCovarianceAngles (data_set, positive_examples, node.covariance_rot_, node.rot_mean_);
508  }
509 
510  /** \brief Generates code for branch index computation.
511  * \param[out] stream The destination for the generated code.
512  */
513  // param[in] node The node for which code is generated.
514  void generateCodeForBranchIndexComputation(NodeType & /*node*/, std::ostream & stream) const override
515  {
516  stream << "ERROR: RegressionVarianceStatsEstimator does not implement generateCodeForBranchIndex(...)";
517  }
518 
519  /** \brief Generates code for label output.
520  * \param[out] stream The destination for the generated code.
521  */
522  // param[in] node The node for which code is generated.
523  void generateCodeForOutput(NodeType & /*node*/, std::ostream & stream) const override
524  {
525  stream << "ERROR: RegressionVarianceStatsEstimator does not implement generateCodeForBranchIndex(...)";
526  }
527 
528  private:
529  /** \brief The branch estimator. */
530  pcl::BranchEstimator * branch_estimator_;
531  };
532  }
533 }
Interface for branch estimators.
virtual std::size_t getNumOfBranches() const =0
Returns the number of branches the corresponding tree has.
virtual void computeBranchIndex(const float result, const unsigned char flag, const float threshold, unsigned char &branch_index) const =0
Computes the branch index for the specified result.
Utility class interface which is used for creating and evaluating features.
Class interface for gathering statistics for decision tree learning.
void setWSize(int w)
Sets the size of the window to extract features.
Definition: rf_face_utils.h:41
void setMaxPatchSize(int w)
Create a set of random tests to evaluate examples.
Definition: rf_face_utils.h:57
void createRandomFeatures(const std::size_t num_of_features, std::vector< FT > &features) override
Create a set of random tests to evaluate examples.
Definition: rf_face_utils.h:94
void generateCodeForEvaluation(const FT &, ::std::ostream &) const override
Generates evaluation code for the specified feature and writes it to the specified stream.
void evaluateFeature(const FT &feature, DataSet &data_set, const ExampleIndex &example, float &result, unsigned char &flag) const override
Evaluates a feature on the specified example.
void setNumChannels(int nf)
Sets the number of channels a feature has (i.e.
Definition: rf_face_utils.h:49
void evaluateFeature(const FT &feature, DataSet &data_set, std::vector< ExampleIndex > &examples, std::vector< float > &results, std::vector< unsigned char > &flags) const override
Evaluates a feature on the specified set of examples.
Statistics estimator for regression trees which optimizes information gain and pose parameters error.
void computeAndSetNodeStats(DataSet &data_set, std::vector< ExampleIndex > &examples, std::vector< LabelDataType > &label_data, NodeType &node) const override
Computes and sets the statistics for a node.
void computeBranchIndices(std::vector< float > &results, std::vector< unsigned char > &flags, const float threshold, std::vector< unsigned char > &branch_indices) const override
Computes the branch indices for all supplied results.
unsigned int computeMeanAndCovarianceAngles(DataSet &data_set, std::vector< ExampleIndex > &examples, Eigen::Matrix3d &covariance_matrix, Eigen::Vector3d &centroid) const
Computes the covariance matrix for rotation values.
LabelDataType getLabelOfNode(NodeType &node) const override
Returns the label of the specified node.
PoseClassRegressionVarianceStatsEstimator(BranchEstimator *branch_estimator)
Constructor.
~PoseClassRegressionVarianceStatsEstimator() override=default
Destructor.
unsigned int computeMeanAndCovarianceOffset(DataSet &data_set, std::vector< ExampleIndex > &examples, Eigen::Matrix3d &covariance_matrix, Eigen::Vector3d &centroid) const
Computes the covariance matrix for translation offsets.
void generateCodeForBranchIndexComputation(NodeType &, std::ostream &stream) const override
Generates code for branch index computation.
void computeBranchIndex(const float result, const unsigned char flag, const float threshold, unsigned char &branch_index) const override
Computes the branch index for the specified result.
void generateCodeForOutput(NodeType &, std::ostream &stream) const override
Generates code for label output.
float computeInformationGain(DataSet &data_set, std::vector< ExampleIndex > &examples, std::vector< LabelDataType > &label_data, std::vector< float > &results, std::vector< unsigned char > &flags, const float threshold) const override
Computes the information gain obtained by the specified threshold.
std::size_t getNumOfBranches() const override
Returns the number of branches the corresponding tree has.
std::vector< pcl::IntegralImage2D< float, 1 >::Ptr > iimages_
Definition: face_common.h:16
__inline double pcl_round(double number)
Win32 doesn't seem to have rounding functions.
Definition: pcl_macros.h:241
#define M_PI
Definition: pcl_macros.h:203