Using a matrix to transform a point cloud
In this tutorial we will learn how to transform a point cloud using a 4x4 matrix. We will apply a rotation and a translation to a loaded point cloud and display the result.
This program is able to load one PCD or PLY file; apply a matrix transformation on it and display the original and transformed point cloud.
The code
First, create a file, let’s say, matrix_transform.cpp
in your favorite
editor, and place the following code inside it:
1#include <iostream>
2
3#include <pcl/io/pcd_io.h>
4#include <pcl/io/ply_io.h>
5#include <pcl/point_cloud.h>
6#include <pcl/console/parse.h>
7#include <pcl/common/transforms.h>
8#include <pcl/visualization/pcl_visualizer.h>
9
10// This function displays the help
11void
12showHelp(char * program_name)
13{
14 std::cout << std::endl;
15 std::cout << "Usage: " << program_name << " cloud_filename.[pcd|ply]" << std::endl;
16 std::cout << "-h: Show this help." << std::endl;
17}
18
19// This is the main function
20int
21main (int argc, char** argv)
22{
23
24 // Show help
25 if (pcl::console::find_switch (argc, argv, "-h") || pcl::console::find_switch (argc, argv, "--help")) {
26 showHelp (argv[0]);
27 return 0;
28 }
29
30 // Fetch point cloud filename in arguments | Works with PCD and PLY files
31 std::vector<int> filenames;
32 bool file_is_pcd = false;
33
34 filenames = pcl::console::parse_file_extension_argument (argc, argv, ".ply");
35
36 if (filenames.size () != 1) {
37 filenames = pcl::console::parse_file_extension_argument (argc, argv, ".pcd");
38
39 if (filenames.size () != 1) {
40 showHelp (argv[0]);
41 return -1;
42 } else {
43 file_is_pcd = true;
44 }
45 }
46
47 // Load file | Works with PCD and PLY files
48 pcl::PointCloud<pcl::PointXYZ>::Ptr source_cloud (new pcl::PointCloud<pcl::PointXYZ> ());
49
50 if (file_is_pcd) {
51 if (pcl::io::loadPCDFile (argv[filenames[0]], *source_cloud) < 0) {
52 std::cout << "Error loading point cloud " << argv[filenames[0]] << std::endl << std::endl;
53 showHelp (argv[0]);
54 return -1;
55 }
56 } else {
57 if (pcl::io::loadPLYFile (argv[filenames[0]], *source_cloud) < 0) {
58 std::cout << "Error loading point cloud " << argv[filenames[0]] << std::endl << std::endl;
59 showHelp (argv[0]);
60 return -1;
61 }
62 }
63
64 /* Reminder: how transformation matrices work :
65
66 |-------> This column is the translation
67 | 1 0 0 x | \
68 | 0 1 0 y | }-> The identity 3x3 matrix (no rotation) on the left
69 | 0 0 1 z | /
70 | 0 0 0 1 | -> We do not use this line (and it has to stay 0,0,0,1)
71
72 METHOD #1: Using a Matrix4f
73 This is the "manual" method, perfect to understand but error prone !
74 */
75 Eigen::Matrix4f transform_1 = Eigen::Matrix4f::Identity();
76
77 // Define a rotation matrix (see https://en.wikipedia.org/wiki/Rotation_matrix)
78 float theta = M_PI/4; // The angle of rotation in radians
79 transform_1 (0,0) = std::cos (theta);
80 transform_1 (0,1) = -sin(theta);
81 transform_1 (1,0) = sin (theta);
82 transform_1 (1,1) = std::cos (theta);
83 // (row, column)
84
85 // Define a translation of 2.5 meters on the x axis.
86 transform_1 (0,3) = 2.5;
87
88 // Print the transformation
89 printf ("Method #1: using a Matrix4f\n");
90 std::cout << transform_1 << std::endl;
91
92 /* METHOD #2: Using a Affine3f
93 This method is easier and less error prone
94 */
95 Eigen::Affine3f transform_2 = Eigen::Affine3f::Identity();
96
97 // Define a translation of 2.5 meters on the x axis.
98 transform_2.translation() << 2.5, 0.0, 0.0;
99
100 // The same rotation matrix as before; theta radians around Z axis
101 transform_2.rotate (Eigen::AngleAxisf (theta, Eigen::Vector3f::UnitZ()));
102
103 // Print the transformation
104 printf ("\nMethod #2: using an Affine3f\n");
105 std::cout << transform_2.matrix() << std::endl;
106
107 // Executing the transformation
108 pcl::PointCloud<pcl::PointXYZ>::Ptr transformed_cloud (new pcl::PointCloud<pcl::PointXYZ> ());
109 // You can either apply transform_1 or transform_2; they are the same
110 pcl::transformPointCloud (*source_cloud, *transformed_cloud, transform_2);
111
112 // Visualization
113 printf( "\nPoint cloud colors : white = original point cloud\n"
114 " red = transformed point cloud\n");
115 pcl::visualization::PCLVisualizer viewer ("Matrix transformation example");
116
117 // Define R,G,B colors for the point cloud
118 pcl::visualization::PointCloudColorHandlerCustom<pcl::PointXYZ> source_cloud_color_handler (source_cloud, 255, 255, 255);
119 // We add the point cloud to the viewer and pass the color handler
120 viewer.addPointCloud (source_cloud, source_cloud_color_handler, "original_cloud");
121
122 pcl::visualization::PointCloudColorHandlerCustom<pcl::PointXYZ> transformed_cloud_color_handler (transformed_cloud, 230, 20, 20); // Red
123 viewer.addPointCloud (transformed_cloud, transformed_cloud_color_handler, "transformed_cloud");
124
125 viewer.addCoordinateSystem (1.0, "cloud", 0);
126 viewer.setBackgroundColor(0.05, 0.05, 0.05, 0); // Setting background to a dark grey
127 viewer.setPointCloudRenderingProperties (pcl::visualization::PCL_VISUALIZER_POINT_SIZE, 2, "original_cloud");
128 viewer.setPointCloudRenderingProperties (pcl::visualization::PCL_VISUALIZER_POINT_SIZE, 2, "transformed_cloud");
129 //viewer.setPosition(800, 400); // Setting visualiser window position
130
131 while (!viewer.wasStopped ()) { // Display the visualiser until 'q' key is pressed
132 viewer.spinOnce ();
133 }
134
135 return 0;
136}
The explanation
Now, let’s break down the code piece by piece.
#include <iostream>
#include <pcl/io/pcd_io.h>
#include <pcl/io/ply_io.h>
#include <pcl/point_cloud.h>
#include <pcl/console/parse.h>
#include <pcl/common/transforms.h>
#include <pcl/visualization/pcl_visualizer.h>
We include all the headers we will make use of. #include <pcl/common/transforms.h> allows us to use pcl::transformPointCloud function.
// This function displays the help
void
showHelp(char * program_name)
{
std::cout << std::endl;
std::cout << "Usage: " << program_name << " cloud_filename.[pcd|ply]" << std::endl;
std::cout << "-h: Show this help." << std::endl;
}
This function display the help in case the user didn’t provide expected arguments.
// Show help
if (pcl::console::find_switch (argc, argv, "-h") || pcl::console::find_switch (argc, argv, "--help")) {
showHelp (argv[0]);
return 0;
}
We parse the arguments on the command line, either using -h or –help will display the help. This terminates the program
// Fetch point cloud filename in arguments | Works with PCD and PLY files
std::vector<int> filenames;
bool file_is_pcd = false;
filenames = pcl::console::parse_file_extension_argument (argc, argv, ".ply");
if (filenames.size () != 1) {
filenames = pcl::console::parse_file_extension_argument (argc, argv, ".pcd");
if (filenames.size () != 1) {
showHelp (argv[0]);
return -1;
} else {
file_is_pcd = true;
}
}
We look for .ply or .pcd filenames in the arguments. If not found; terminate the program. The bool file_is_pcd will help us choose between loading PCD or PLY file.
// Load file | Works with PCD and PLY files
pcl::PointCloud<pcl::PointXYZ>::Ptr source_cloud (new pcl::PointCloud<pcl::PointXYZ> ());
if (file_is_pcd) {
if (pcl::io::loadPCDFile (argv[filenames[0]], *source_cloud) < 0) {
std::cout << "Error loading point cloud " << argv[filenames[0]] << std::endl << std::endl;
showHelp (argv[0]);
return -1;
}
} else {
if (pcl::io::loadPLYFile (argv[filenames[0]], *source_cloud) < 0) {
std::cout << "Error loading point cloud " << argv[filenames[0]] << std::endl << std::endl;
showHelp (argv[0]);
return -1;
}
}
We now load the PCD/PLY file and check if the file was loaded successfully. Otherwise terminate the program.
/* Reminder: how transformation matrices work :
|-------> This column is the translation
| 1 0 0 x | \
| 0 1 0 y | }-> The identity 3x3 matrix (no rotation) on the left
| 0 0 1 z | /
| 0 0 0 1 | -> We do not use this line (and it has to stay 0,0,0,1)
METHOD #1: Using a Matrix4f
This is the "manual" method, perfect to understand but error prone !
*/
Eigen::Matrix4f transform_1 = Eigen::Matrix4f::Identity();
This is a first approach to create a transformation. This will help you understand how transformation matrices work. We initialize a 4x4 matrix to identity;
| 1 0 0 0 |
i = | 0 1 0 0 |
| 0 0 1 0 |
| 0 0 0 1 |
Note
The identity matrix is the equivalent of “1” when multiplying numbers; it changes nothing. It is a square matrix with ones on the main diagonal and zeros elsewhere.
This means no transformation (no rotation and no translation). We do not use the last row of the matrix.
The first 3 rows and columns (top left) components are the rotation matrix. The first 3 rows of the last column is the translation.
// Define a rotation matrix (see https://en.wikipedia.org/wiki/Rotation_matrix)
float theta = M_PI/4; // The angle of rotation in radians
transform_1 (0,0) = std::cos (theta);
transform_1 (0,1) = -sin(theta);
transform_1 (1,0) = sin (theta);
transform_1 (1,1) = std::cos (theta);
// (row, column)
// Define a translation of 2.5 meters on the x axis.
transform_1 (0,3) = 2.5;
// Print the transformation
printf ("Method #1: using a Matrix4f\n");
std::cout << transform_1 << std::endl;
Here we defined a 45° (PI/4) rotation around the Z axis and a translation on the X axis. This is the transformation we just defined
| cos(θ) -sin(θ) 0.0 |
R = | sin(θ) cos(θ) 0.0 |
| 0.0 0.0 1.0 |
t = < 2.5, 0.0, 0.0 >
/* METHOD #2: Using a Affine3f
This method is easier and less error prone
*/
Eigen::Affine3f transform_2 = Eigen::Affine3f::Identity();
// Define a translation of 2.5 meters on the x axis.
transform_2.translation() << 2.5, 0.0, 0.0;
// The same rotation matrix as before; theta radians around Z axis
transform_2.rotate (Eigen::AngleAxisf (theta, Eigen::Vector3f::UnitZ()));
// Print the transformation
printf ("\nMethod #2: using an Affine3f\n");
std::cout << transform_2.matrix() << std::endl;
This second approach is easier to understand and is less error prone. Be careful if you want to apply several rotations; rotations are not commutative ! This means than in most cases: rotA * rotB != rotB * rotA.
// Executing the transformation
pcl::PointCloud<pcl::PointXYZ>::Ptr transformed_cloud (new pcl::PointCloud<pcl::PointXYZ> ());
// You can either apply transform_1 or transform_2; they are the same
pcl::transformPointCloud (*source_cloud, *transformed_cloud, transform_2);
Now we apply this matrix on the point cloud source_cloud and we save the result in the newly created transformed_cloud.
// Visualization
printf( "\nPoint cloud colors : white = original point cloud\n"
" red = transformed point cloud\n");
pcl::visualization::PCLVisualizer viewer ("Matrix transformation example");
// Define R,G,B colors for the point cloud
pcl::visualization::PointCloudColorHandlerCustom<pcl::PointXYZ> source_cloud_color_handler (source_cloud, 255, 255, 255);
// We add the point cloud to the viewer and pass the color handler
viewer.addPointCloud (source_cloud, source_cloud_color_handler, "original_cloud");
pcl::visualization::PointCloudColorHandlerCustom<pcl::PointXYZ> transformed_cloud_color_handler (transformed_cloud, 230, 20, 20); // Red
viewer.addPointCloud (transformed_cloud, transformed_cloud_color_handler, "transformed_cloud");
viewer.addCoordinateSystem (1.0, "cloud", 0);
viewer.setBackgroundColor(0.05, 0.05, 0.05, 0); // Setting background to a dark grey
viewer.setPointCloudRenderingProperties (pcl::visualization::PCL_VISUALIZER_POINT_SIZE, 2, "original_cloud");
viewer.setPointCloudRenderingProperties (pcl::visualization::PCL_VISUALIZER_POINT_SIZE, 2, "transformed_cloud");
//viewer.setPosition(800, 400); // Setting visualiser window position
while (!viewer.wasStopped ()) { // Display the visualiser until 'q' key is pressed
viewer.spinOnce ();
}
return 0;
We then visualize the result using the PCLVisualizer. The original point cloud will be displayed white and the transformed one in red. The coordoniates axis will be displayed. We also set the background color of the visualizer and the point display size.
Compiling and running the program
Add the following lines to your CMakeLists.txt file:
1cmake_minimum_required(VERSION 3.5 FATAL_ERROR)
2
3project(pcl-matrix_transform)
4
5find_package(PCL 1.7 REQUIRED)
6
7include_directories(${PCL_INCLUDE_DIRS})
8link_directories(${PCL_LIBRARY_DIRS})
9add_definitions(${PCL_DEFINITIONS})
10
11add_executable (matrix_transform matrix_transform.cpp)
12target_link_libraries (matrix_transform ${PCL_LIBRARIES})
After you have made the executable, run it passing a path to a PCD or PLY file. To reproduce the results shown below, you can download the cube.ply file:
$ ./matrix_transform cube.ply
You will see something similar to this:
./matrix_transform cube.ply
[pcl::PLYReader] /home/victor/cube.ply:12: property 'list uint8 uint32 vertex_indices' of element 'face' is not handled
Method #1: using a Matrix4f
0.707107 -0.707107 0 2.5
0.707107 0.707107 0 0
0 0 1 0
0 0 0 1
Method #2: using an Affine3f
0.707107 -0.707107 0 2.5
0.707107 0.707107 0 0
0 0 1 0
0 0 0 1
Point cloud colors : white = original point cloud
red = transformed point cloud
More about transformations
We need a vector with 4 components. What do you put in the last component ? It depends on what you want to do:
If you want to transform a point: put 1 at the end of the vector so that the translation is taken in account.
If you want to transform the direction of a vector: put 0 at the end of the vector to ignore the translation.
Here’s a quick example, we want to transform the following vector:
[10, 5, 0, 3, 0, -1]
This is what you need to do to transform the vector:
[10, 5, 0, 1] * 4x4_transformation_matrix
[3, 0, -1, 0] * 4x4_transformation_matrix