Cylinder model segmentation
This tutorial exemplifies how to run a Sample Consensus segmentation for cylindrical models. To make the example a bit more practical, the following operations are applied to the input dataset (in order):
data points further away than 1.5 meters are filtered
surface normals at each point are estimated
a plane model (describing the table in our demo dataset) is segmented and saved to disk
a cylindrical model (describing the mug in our demo dataset) is segmented and saved to disk
Note
The cylindrical model is not perfect due to the presence of noise in the data.
The code
First, download the dataset table_scene_mug_stereo_textured.pcd and save it somewhere to disk.
Then, create a file, let’s say, cylinder_segmentation.cpp
in your favorite
editor, and place the following inside it:
1#include <pcl/ModelCoefficients.h>
2#include <pcl/io/pcd_io.h>
3#include <pcl/point_types.h>
4#include <pcl/filters/extract_indices.h>
5#include <pcl/filters/passthrough.h>
6#include <pcl/features/normal_3d.h>
7#include <pcl/sample_consensus/method_types.h>
8#include <pcl/sample_consensus/model_types.h>
9#include <pcl/segmentation/sac_segmentation.h>
10
11typedef pcl::PointXYZ PointT;
12
13int
14main ()
15{
16 // All the objects needed
17 pcl::PCDReader reader;
18 pcl::PassThrough<PointT> pass;
19 pcl::NormalEstimation<PointT, pcl::Normal> ne;
20 pcl::SACSegmentationFromNormals<PointT, pcl::Normal> seg;
21 pcl::PCDWriter writer;
22 pcl::ExtractIndices<PointT> extract;
23 pcl::ExtractIndices<pcl::Normal> extract_normals;
24 pcl::search::KdTree<PointT>::Ptr tree (new pcl::search::KdTree<PointT> ());
25
26 // Datasets
27 pcl::PointCloud<PointT>::Ptr cloud (new pcl::PointCloud<PointT>);
28 pcl::PointCloud<PointT>::Ptr cloud_filtered (new pcl::PointCloud<PointT>);
29 pcl::PointCloud<pcl::Normal>::Ptr cloud_normals (new pcl::PointCloud<pcl::Normal>);
30 pcl::PointCloud<PointT>::Ptr cloud_filtered2 (new pcl::PointCloud<PointT>);
31 pcl::PointCloud<pcl::Normal>::Ptr cloud_normals2 (new pcl::PointCloud<pcl::Normal>);
32 pcl::ModelCoefficients::Ptr coefficients_plane (new pcl::ModelCoefficients), coefficients_cylinder (new pcl::ModelCoefficients);
33 pcl::PointIndices::Ptr inliers_plane (new pcl::PointIndices), inliers_cylinder (new pcl::PointIndices);
34
35 // Read in the cloud data
36 reader.read ("table_scene_mug_stereo_textured.pcd", *cloud);
37 std::cerr << "PointCloud has: " << cloud->size () << " data points." << std::endl;
38
39 // Build a passthrough filter to remove spurious NaNs and scene background
40 pass.setInputCloud (cloud);
41 pass.setFilterFieldName ("z");
42 pass.setFilterLimits (0, 1.5);
43 pass.filter (*cloud_filtered);
44 std::cerr << "PointCloud after filtering has: " << cloud_filtered->size () << " data points." << std::endl;
45
46 // Estimate point normals
47 ne.setSearchMethod (tree);
48 ne.setInputCloud (cloud_filtered);
49 ne.setKSearch (50);
50 ne.compute (*cloud_normals);
51
52 // Create the segmentation object for the planar model and set all the parameters
53 seg.setOptimizeCoefficients (true);
54 seg.setModelType (pcl::SACMODEL_NORMAL_PLANE);
55 seg.setNormalDistanceWeight (0.1);
56 seg.setMethodType (pcl::SAC_RANSAC);
57 seg.setMaxIterations (100);
58 seg.setDistanceThreshold (0.03);
59 seg.setInputCloud (cloud_filtered);
60 seg.setInputNormals (cloud_normals);
61 // Obtain the plane inliers and coefficients
62 seg.segment (*inliers_plane, *coefficients_plane);
63 std::cerr << "Plane coefficients: " << *coefficients_plane << std::endl;
64
65 // Extract the planar inliers from the input cloud
66 extract.setInputCloud (cloud_filtered);
67 extract.setIndices (inliers_plane);
68 extract.setNegative (false);
69
70 // Write the planar inliers to disk
71 pcl::PointCloud<PointT>::Ptr cloud_plane (new pcl::PointCloud<PointT> ());
72 extract.filter (*cloud_plane);
73 std::cerr << "PointCloud representing the planar component: " << cloud_plane->size () << " data points." << std::endl;
74 writer.write ("table_scene_mug_stereo_textured_plane.pcd", *cloud_plane, false);
75
76 // Remove the planar inliers, extract the rest
77 extract.setNegative (true);
78 extract.filter (*cloud_filtered2);
79 extract_normals.setNegative (true);
80 extract_normals.setInputCloud (cloud_normals);
81 extract_normals.setIndices (inliers_plane);
82 extract_normals.filter (*cloud_normals2);
83
84 // Create the segmentation object for cylinder segmentation and set all the parameters
85 seg.setOptimizeCoefficients (true);
86 seg.setModelType (pcl::SACMODEL_CYLINDER);
87 seg.setMethodType (pcl::SAC_RANSAC);
88 seg.setNormalDistanceWeight (0.1);
89 seg.setMaxIterations (10000);
90 seg.setDistanceThreshold (0.05);
91 seg.setRadiusLimits (0, 0.1);
92 seg.setInputCloud (cloud_filtered2);
93 seg.setInputNormals (cloud_normals2);
94
95 // Obtain the cylinder inliers and coefficients
96 seg.segment (*inliers_cylinder, *coefficients_cylinder);
97 std::cerr << "Cylinder coefficients: " << *coefficients_cylinder << std::endl;
98
99 // Write the cylinder inliers to disk
100 extract.setInputCloud (cloud_filtered2);
101 extract.setIndices (inliers_cylinder);
102 extract.setNegative (false);
103 pcl::PointCloud<PointT>::Ptr cloud_cylinder (new pcl::PointCloud<PointT> ());
104 extract.filter (*cloud_cylinder);
105 if (cloud_cylinder->points.empty ())
106 std::cerr << "Can't find the cylindrical component." << std::endl;
107 else
108 {
109 std::cerr << "PointCloud representing the cylindrical component: " << cloud_cylinder->size () << " data points." << std::endl;
110 writer.write ("table_scene_mug_stereo_textured_cylinder.pcd", *cloud_cylinder, false);
111 }
112 return (0);
113}
The explanation
The only relevant lines are the lines below, as the other operations are already described in the other tutorials.
// Create the segmentation object for cylinder segmentation and set all the parameters
seg.setOptimizeCoefficients (true);
seg.setModelType (pcl::SACMODEL_CYLINDER);
seg.setMethodType (pcl::SAC_RANSAC);
seg.setNormalDistanceWeight (0.1);
seg.setMaxIterations (10000);
seg.setDistanceThreshold (0.05);
seg.setRadiusLimits (0, 0.1);
As seen, we’re using a RANSAC robust estimator to obtain the cylinder coefficients, and we’re imposing a distance threshold from each inlier point to the model no greater than 5cm. In addition, we set the surface normals influence to a weight of 0.1, and we limit the radius of the cylindrical model to be smaller than 10cm.
Compiling and running the program
Add the following lines to your CMakeLists.txt file:
1cmake_minimum_required(VERSION 3.5 FATAL_ERROR)
2
3project(cylinder_segmentation)
4
5find_package(PCL 1.2 REQUIRED)
6
7include_directories(${PCL_INCLUDE_DIRS})
8link_directories(${PCL_LIBRARY_DIRS})
9add_definitions(${PCL_DEFINITIONS})
10
11add_executable (cylinder_segmentation cylinder_segmentation.cpp)
12target_link_libraries (cylinder_segmentation ${PCL_LIBRARIES})
After you have made the executable, you can run it. Simply do:
$ ./cylinder_segmentation
You will see something similar to:
PointCloud has: 307200 data points.
PointCloud after filtering has: 139897 data points.
[pcl::SACSegmentationFromNormals::initSACModel] Using a model of type: SACMODEL_NORMAL_PLANE
[pcl::SACSegmentationFromNormals::initSACModel] Setting normal distance weight to 0.100000
[pcl::SACSegmentationFromNormals::initSAC] Using a method of type: SAC_RANSAC with a model threshold of 0.030000
[pcl::SACSegmentationFromNormals::initSAC] Setting the maximum number of iterations to 100
Plane coefficients: header:
seq: 0
stamp: 0.000000000
frame_id:
values[]
values[0]: -0.0161854
values[1]: 0.837724
values[2]: 0.545855
values[3]: -0.528787
PointCloud representing the planar component: 117410 data points.
[pcl::SACSegmentationFromNormals::initSACModel] Using a model of type: SACMODEL_CYLINDER
[pcl::SACSegmentationFromNormals::initSACModel] Setting radius limits to 0.000000/0.100000
[pcl::SACSegmentationFromNormals::initSACModel] Setting normal distance weight to 0.100000
[pcl::SACSegmentationFromNormals::initSAC] Using a method of type: SAC_RANSAC with a model threshold of 0.050000
[pcl::SampleConsensusModelCylinder::optimizeModelCoefficients] LM solver finished with exit code 2, having a residual norm of 0.322616.
Initial solution: 0.0452105 0.0924601 0.790215 0.20495 -0.721649 -0.661225 0.0422902
Final solution: 0.0452105 0.0924601 0.790215 0.20495 -0.721649 -0.661225 0.0396354
Cylinder coefficients: header:
seq: 0
stamp: 0.000000000
frame_id:
values[]
values[0]: 0.0452105
values[1]: 0.0924601
values[2]: 0.790215
values[3]: 0.20495
values[4]: -0.721649
values[5]: -0.661225
values[6]: 0.0396354
PointCloud representing the cylindrical component: 8625 data points.